INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS

Detalhes bibliográficos
Autor(a) principal: Fanti, Erminia de Lourdes Campello
Data de Publicação: 1992
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55132/tde-28112019-161640/
Resumo: Neste trabalho definimos um invariante cohomológico E(G,S , M) onde G é um grupo, S = {Si}i∈l é uma família de subgrupos de G de índice infinito e M é um Z2G-módulo. O caso onde S = {S} é investigado. Verificamos que E(G, {S}, M) têm uma interpretação em termos de derivações e derivações principais, e deste modo em certos casos a computação deste invariante é possível. Também apresentamos uma interpretação topológica para E(G, S, M ) em termos de cohomologia relativa de complexos (X, Y) se (X, Y) é um par Eilenberg-MacLane realizando (G, S). Este invariante está intimamente relacionado com o end clássico e(G) para um grupo G, e os ends e(G, S) e ê(G,S) para um par grupo (G, S). Denotamos E(G, {S}, Z2(G/S)) e E(G, {S}, Z2 ⊗Z2S PS) por E(G, S) e Ê(G, S) respectivamente. Temos que E(G, {1}) = Ê(G, {1}) = ê(G) e em alguns casos E(G, S) = e(G, S) e Ê(G, S) = ê(G, S). Entretanto damos exemplos onde eles são distintos. Alguns resultados são obtidos no caso onde G e S têm certas propriedades de dualidade. Relacionamos Ê(G, S) com decomposições de grupos tais como HNN-extensões e produto livre amalgamado.
id USP_e0327442b34bbb2015a66113b8c4ab82
oai_identifier_str oai:teses.usp.br:tde-28112019-161640
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOSNot availableNão disponívelNot availableNeste trabalho definimos um invariante cohomológico E(G,S , M) onde G é um grupo, S = {Si}i∈l é uma família de subgrupos de G de índice infinito e M é um Z2G-módulo. O caso onde S = {S} é investigado. Verificamos que E(G, {S}, M) têm uma interpretação em termos de derivações e derivações principais, e deste modo em certos casos a computação deste invariante é possível. Também apresentamos uma interpretação topológica para E(G, S, M ) em termos de cohomologia relativa de complexos (X, Y) se (X, Y) é um par Eilenberg-MacLane realizando (G, S). Este invariante está intimamente relacionado com o end clássico e(G) para um grupo G, e os ends e(G, S) e ê(G,S) para um par grupo (G, S). Denotamos E(G, {S}, Z2(G/S)) e E(G, {S}, Z2 ⊗Z2S PS) por E(G, S) e Ê(G, S) respectivamente. Temos que E(G, {1}) = Ê(G, {1}) = ê(G) e em alguns casos E(G, S) = e(G, S) e Ê(G, S) = ê(G, S). Entretanto damos exemplos onde eles são distintos. Alguns resultados são obtidos no caso onde G e S têm certas propriedades de dualidade. Relacionamos Ê(G, S) com decomposições de grupos tais como HNN-extensões e produto livre amalgamado.In this work we define a cohomological invariant E(G, S, M) where G is a group, S = i∈l is a family of infinite index subgroups of G and M a Z2G-module. The case where S = is investigated. We verify that E(G, M) has a interpretation in terms of derivations and principal derivations, and so in certain cases computation is available. Also we give a topological interpretation for E(G, M) in terms of relative cohomology of complexes (X, Y) if (X, Y) is a Eilenberg-MacLane pair realizing (G, S). This invarant is closely related to the classical end ∈(G) for a group G, and the ends e(G, S), ê(G, S) for a group pair. We denote E(G, {S}, Z2(G / S)) and E(G, {S}, Z2G ⊗Z2S PS) by E(G, S) and Ê(G. S) respectively. We have that E(G, {1}) = Ê(G, {1}) = e(G) and in some cases E(G ,S) = e(G, S) and Ê(G, S) = ê(G, S). However we give examples where they are distinct. Some results are obtained in the case where G and S have certain property of duality. We relate Ê(G, S) with decomposition of groups like HNN-extensions and free amalgamated product.Biblioteca Digitais de Teses e Dissertações da USPDaccach, Janey AntonioFanti, Erminia de Lourdes Campello1992-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55132/tde-28112019-161640/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-11-30T00:01:01Zoai:teses.usp.br:tde-28112019-161640Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-30T00:01:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS
Not available
title INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS
spellingShingle INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS
Fanti, Erminia de Lourdes Campello
Não disponível
Not available
title_short INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS
title_full INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS
title_fullStr INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS
title_full_unstemmed INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS
title_sort INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS
author Fanti, Erminia de Lourdes Campello
author_facet Fanti, Erminia de Lourdes Campello
author_role author
dc.contributor.none.fl_str_mv Daccach, Janey Antonio
dc.contributor.author.fl_str_mv Fanti, Erminia de Lourdes Campello
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Neste trabalho definimos um invariante cohomológico E(G,S , M) onde G é um grupo, S = {Si}i∈l é uma família de subgrupos de G de índice infinito e M é um Z2G-módulo. O caso onde S = {S} é investigado. Verificamos que E(G, {S}, M) têm uma interpretação em termos de derivações e derivações principais, e deste modo em certos casos a computação deste invariante é possível. Também apresentamos uma interpretação topológica para E(G, S, M ) em termos de cohomologia relativa de complexos (X, Y) se (X, Y) é um par Eilenberg-MacLane realizando (G, S). Este invariante está intimamente relacionado com o end clássico e(G) para um grupo G, e os ends e(G, S) e ê(G,S) para um par grupo (G, S). Denotamos E(G, {S}, Z2(G/S)) e E(G, {S}, Z2 ⊗Z2S PS) por E(G, S) e Ê(G, S) respectivamente. Temos que E(G, {1}) = Ê(G, {1}) = ê(G) e em alguns casos E(G, S) = e(G, S) e Ê(G, S) = ê(G, S). Entretanto damos exemplos onde eles são distintos. Alguns resultados são obtidos no caso onde G e S têm certas propriedades de dualidade. Relacionamos Ê(G, S) com decomposições de grupos tais como HNN-extensões e produto livre amalgamado.
publishDate 1992
dc.date.none.fl_str_mv 1992-12-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55132/tde-28112019-161640/
url http://www.teses.usp.br/teses/disponiveis/55/55132/tde-28112019-161640/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257447982432256