O grupo de homotopia de tranças puras no disco é bi-ordenável
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03012019-100034/ |
Resumo: | Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ao estudo de nós e enlaçamentos. Em seu outro artigo Theory of Braids Artin (1947), ele questionou se as noções de isotopia e homotopia de tranças são as mesmas ou diferentes. Tal questão foi respondida muito mais tarde em Goldsmith (1974), onde a autora apresenta um exemplo de trança que é homotópica à trança trivial mas não é equivalente à trança trivial, caracterizando, além disso, o grupo de classes de homotopia de tranças puras no disco como um certo quociente do grupo de tranças puras original. Uma área de pesquisa mais recente nesta teoria é o estudo da ordenação destes grupos de tranças. Em Habegger e Lin (1990) os autores mostram que o grupo de classes de homotopia de tranças puras no disco é nilpotente e livre de torção. Resulta que ele é bi-ordenado. Em Yurasovskaya (2008) a autora fornece uma ordem explícita e calculável para este grupo. Neste trabalho discutiremos e apresentaremos os principais resultados neste contexto. |
id |
USP_e0bf49f4c7c97acd76ecaea6d6b3ab9e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03012019-100034 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
O grupo de homotopia de tranças puras no disco é bi-ordenávelThe homotopy group of braids over a disc is bi-orderableBraid groupsGrupo de trançashomotopiahomotopyIsotopiaIsotopyOrdenaçãoOrdenationEm Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ao estudo de nós e enlaçamentos. Em seu outro artigo Theory of Braids Artin (1947), ele questionou se as noções de isotopia e homotopia de tranças são as mesmas ou diferentes. Tal questão foi respondida muito mais tarde em Goldsmith (1974), onde a autora apresenta um exemplo de trança que é homotópica à trança trivial mas não é equivalente à trança trivial, caracterizando, além disso, o grupo de classes de homotopia de tranças puras no disco como um certo quociente do grupo de tranças puras original. Uma área de pesquisa mais recente nesta teoria é o estudo da ordenação destes grupos de tranças. Em Habegger e Lin (1990) os autores mostram que o grupo de classes de homotopia de tranças puras no disco é nilpotente e livre de torção. Resulta que ele é bi-ordenado. Em Yurasovskaya (2008) a autora fornece uma ordem explícita e calculável para este grupo. Neste trabalho discutiremos e apresentaremos os principais resultados neste contexto.In Artin (1925), Artin introduced the study of braid groups, which is closely related to the study of knots and links. In his other paper Theory of Braids Artin (1947), he asked if the notions of isotopy and homotopy of braids are different or the same. Such question was answered much later in Goldsmith (1974), where the author presents an example of braid that is homotopic to the trivial braid, but it is not equivalent to the trivial braid, characterizing, beyond that, the group of homotopy classes of braids as an certain quotient of the original braid group. One more recent research area on this theory is the study of ordenation of braid groups. In Habegger e Lin (1990) the authors show that the homotopy group classes of pure braids is nilpotent and torsion free. It follows that it is bi-orderable. In Yurasovskaya (2008) the author provides one explicit and evaluable order for this group. In this work, we will discuss and present the main results involved on this context.Biblioteca Digitais de Teses e Dissertações da USPCampos, José Eduardo Prado Pires deSantos, Mirianne Andressa Silva2018-11-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-03012019-100034/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-09T23:21:59Zoai:teses.usp.br:tde-03012019-100034Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
O grupo de homotopia de tranças puras no disco é bi-ordenável The homotopy group of braids over a disc is bi-orderable |
title |
O grupo de homotopia de tranças puras no disco é bi-ordenável |
spellingShingle |
O grupo de homotopia de tranças puras no disco é bi-ordenável Santos, Mirianne Andressa Silva Braid groups Grupo de tranças homotopia homotopy Isotopia Isotopy Ordenação Ordenation |
title_short |
O grupo de homotopia de tranças puras no disco é bi-ordenável |
title_full |
O grupo de homotopia de tranças puras no disco é bi-ordenável |
title_fullStr |
O grupo de homotopia de tranças puras no disco é bi-ordenável |
title_full_unstemmed |
O grupo de homotopia de tranças puras no disco é bi-ordenável |
title_sort |
O grupo de homotopia de tranças puras no disco é bi-ordenável |
author |
Santos, Mirianne Andressa Silva |
author_facet |
Santos, Mirianne Andressa Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Campos, José Eduardo Prado Pires de |
dc.contributor.author.fl_str_mv |
Santos, Mirianne Andressa Silva |
dc.subject.por.fl_str_mv |
Braid groups Grupo de tranças homotopia homotopy Isotopia Isotopy Ordenação Ordenation |
topic |
Braid groups Grupo de tranças homotopia homotopy Isotopia Isotopy Ordenação Ordenation |
description |
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ao estudo de nós e enlaçamentos. Em seu outro artigo Theory of Braids Artin (1947), ele questionou se as noções de isotopia e homotopia de tranças são as mesmas ou diferentes. Tal questão foi respondida muito mais tarde em Goldsmith (1974), onde a autora apresenta um exemplo de trança que é homotópica à trança trivial mas não é equivalente à trança trivial, caracterizando, além disso, o grupo de classes de homotopia de tranças puras no disco como um certo quociente do grupo de tranças puras original. Uma área de pesquisa mais recente nesta teoria é o estudo da ordenação destes grupos de tranças. Em Habegger e Lin (1990) os autores mostram que o grupo de classes de homotopia de tranças puras no disco é nilpotente e livre de torção. Resulta que ele é bi-ordenado. Em Yurasovskaya (2008) a autora fornece uma ordem explícita e calculável para este grupo. Neste trabalho discutiremos e apresentaremos os principais resultados neste contexto. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03012019-100034/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03012019-100034/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256625927159808 |