Aditividade de aplicações e b-decomposição de Wedderburn
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-24092019-160709/ |
Resumo: | A tese está dividida em duas partes. A primeira parte é dedicada a análise de quando certas aplicações definidas em uma classe de anéis não-associativos são aditivas. Esta questão foi estudada para anéis associativos por Martindale, [38], e outros, [35], [4], [22], [23], [37], [39], [36], [7] e [27]. Para anéis de Jordan, foi estudada por Ji Peisheng, [26], e para anéis alternativos por Ferreira e Guzzo, [12], [13] e [14]. Muito pouco se conhece ainda sobre esta questão com relação a anéis e álgebras não-associativas em geral. Assim, um propósito é o de tentar ampliar ou aprofundar esse conhecimento para outras classes de anéis não-associativos. Um teorema muito importante na teoria das álgebras associativas é o Teorema de Wedderburn. A segunda parte a ser investigada nesta tese procura provar um teorema do tipo Wedderburn para b-álgebras do tipo (, ). Muitos autores buscam provar um teorema do tipo de Wedderburn para algumas álgebras não-associativas, já temos isso feito para as álgebras alternativas e de Jordan. No caso das b-álgebras definimos: No capitulo 4, definimos bdecomposição de Wedderburn. Assim, outra linha es- tudada é ver se alguma b-álgebra possu uma b-decomposição de Wedderburn. |
id |
USP_e12cd0ffb1d3f11df2f7d04a86fbc5b3 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24092019-160709 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Aditividade de aplicações e b-decomposição de WedderburnApplication additivity and b-decomposition of WedderburnAnalysisAplicaçõesApplicationsDecomposiçãoWedderburnWedderburnA tese está dividida em duas partes. A primeira parte é dedicada a análise de quando certas aplicações definidas em uma classe de anéis não-associativos são aditivas. Esta questão foi estudada para anéis associativos por Martindale, [38], e outros, [35], [4], [22], [23], [37], [39], [36], [7] e [27]. Para anéis de Jordan, foi estudada por Ji Peisheng, [26], e para anéis alternativos por Ferreira e Guzzo, [12], [13] e [14]. Muito pouco se conhece ainda sobre esta questão com relação a anéis e álgebras não-associativas em geral. Assim, um propósito é o de tentar ampliar ou aprofundar esse conhecimento para outras classes de anéis não-associativos. Um teorema muito importante na teoria das álgebras associativas é o Teorema de Wedderburn. A segunda parte a ser investigada nesta tese procura provar um teorema do tipo Wedderburn para b-álgebras do tipo (, ). Muitos autores buscam provar um teorema do tipo de Wedderburn para algumas álgebras não-associativas, já temos isso feito para as álgebras alternativas e de Jordan. No caso das b-álgebras definimos: No capitulo 4, definimos bdecomposição de Wedderburn. Assim, outra linha es- tudada é ver se alguma b-álgebra possu uma b-decomposição de Wedderburn.The thesis is divided into two parts. The first part is dedicated to analysis when certain applications defined in a class of non-associative rings are additive. This question was studied for associative rings by Martindale, [38], and others, [35], [4], [22], [23], [37] , [39], [36], [7] and [27]. For Jordans rings, it was studied by Ji Peisheng, [26], and for alternative rings, by Ferreira and Guzzo, [12], [13] and [14]. We know very few results with regard to nonassociative rings and algebras, in general. This way, a purpose is the one of try to extend or to deepen that knowledge to other classes of non-associative rings. A very important theorem in the theory of associative algebras is the Theorem of Wedderburn. The second part to be investigated try to prove a theorem of Wedderburn type to b-algebras (, ) type. Many authors seek to prove a theorem of Wedderburn for some type of non-associative algebras, we have done it for alternative algebras and Jordan. In the case of b-algebras defined: In chapter 4, we define bWedderburn decomposition. Thus, another line study is to see if some b-algebra possess a b-Wedderburn decomposition.Biblioteca Digitais de Teses e Dissertações da USPFerreira, Joao Carlos da MottaGuzzo Junior, HenriqueFerreira, Bruno Leonardo Macedo2013-07-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-24092019-160709/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-11-08T23:43:09Zoai:teses.usp.br:tde-24092019-160709Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T23:43:09Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Aditividade de aplicações e b-decomposição de Wedderburn Application additivity and b-decomposition of Wedderburn |
title |
Aditividade de aplicações e b-decomposição de Wedderburn |
spellingShingle |
Aditividade de aplicações e b-decomposição de Wedderburn Ferreira, Bruno Leonardo Macedo Analysis Aplicações Applications Decomposição Wedderburn Wedderburn |
title_short |
Aditividade de aplicações e b-decomposição de Wedderburn |
title_full |
Aditividade de aplicações e b-decomposição de Wedderburn |
title_fullStr |
Aditividade de aplicações e b-decomposição de Wedderburn |
title_full_unstemmed |
Aditividade de aplicações e b-decomposição de Wedderburn |
title_sort |
Aditividade de aplicações e b-decomposição de Wedderburn |
author |
Ferreira, Bruno Leonardo Macedo |
author_facet |
Ferreira, Bruno Leonardo Macedo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferreira, Joao Carlos da Motta Guzzo Junior, Henrique |
dc.contributor.author.fl_str_mv |
Ferreira, Bruno Leonardo Macedo |
dc.subject.por.fl_str_mv |
Analysis Aplicações Applications Decomposição Wedderburn Wedderburn |
topic |
Analysis Aplicações Applications Decomposição Wedderburn Wedderburn |
description |
A tese está dividida em duas partes. A primeira parte é dedicada a análise de quando certas aplicações definidas em uma classe de anéis não-associativos são aditivas. Esta questão foi estudada para anéis associativos por Martindale, [38], e outros, [35], [4], [22], [23], [37], [39], [36], [7] e [27]. Para anéis de Jordan, foi estudada por Ji Peisheng, [26], e para anéis alternativos por Ferreira e Guzzo, [12], [13] e [14]. Muito pouco se conhece ainda sobre esta questão com relação a anéis e álgebras não-associativas em geral. Assim, um propósito é o de tentar ampliar ou aprofundar esse conhecimento para outras classes de anéis não-associativos. Um teorema muito importante na teoria das álgebras associativas é o Teorema de Wedderburn. A segunda parte a ser investigada nesta tese procura provar um teorema do tipo Wedderburn para b-álgebras do tipo (, ). Muitos autores buscam provar um teorema do tipo de Wedderburn para algumas álgebras não-associativas, já temos isso feito para as álgebras alternativas e de Jordan. No caso das b-álgebras definimos: No capitulo 4, definimos bdecomposição de Wedderburn. Assim, outra linha es- tudada é ver se alguma b-álgebra possu uma b-decomposição de Wedderburn. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-24092019-160709/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-24092019-160709/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257314417967104 |