Audio-based cold-start in music recommendation systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-14102022-124655/ |
Resumo: | Music streaming platforms have become popular in the last decades due to the increasing number of tracks available online. The track catalogues offered by these platforms are usually too big to be searched manually, and automatic recommendation algorithms might be implemented for helping users navigate on these platforms. More specifically, Music Recommendation Systems (MRS) are designed for analyzing user listening behaviours and for predicting the songs that will be played in the near future by one specific user or within a listening session. But in the case new tracks are added to a platform, also known as the cold-start problem, no listening data is available, and the system needs to somehow incorporate these tracks into its recommendation algorithms. In this work, we propose methods that leverage the audio associated with tracks that were recently added to streaming platforms as an alternative for compensating the lack of interaction data. Our propositions are elaborated considering collaborative filtering (CF), sequence-aware (SA), and stream-based (SB) recommendation systems, and audio files are considered represented as codeword histograms, Mel-spectrograms, and raw waveforms. In the first experiment, we propose a method that applies Convolutional Neural Networks (CNN) for mapping audio content to profiles containing the users who listened to a track. In a second experiment, Recurrent Neural Networks (RNN) are trained for reproducing the audio feature associated with the upcoming tracks within a listening session, given the audio feature associated with the current track. An inverted index structure is used for retrieving tracks given their estimated audio feature in an efficient way. In a third experiment, we propose a model that maps track/track transitions to an audio domain in a multi-level Markov Chain fashion. The method allows dynamic updates, allowing its application to scenarios of data streams. The experiments were conducted using the LFM-1b music consumption dataset, and audio previews downloaded from Spotify. Our methods presented competitive prediction results in situations of cold-start in the case of CF and SA recommendation systems. The novel stream-based method is able to recommend tracks with an accuracy that is comparable to the accuracy measured for conventional rating-based methods, being based exclusively on audio content. |
id |
USP_e2a769b1b1d7cba77e358dd42e446c1a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14102022-124655 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Audio-based cold-start in music recommendation systemsSistemas de recomendação de música baseados em áudioAudio contentAudio-based music recommendationCold-startConteúdo de áudioMusic recommendation systemsSistemas de recomendação de músicaSistemas de recomendação de música baseados em áudioMusic streaming platforms have become popular in the last decades due to the increasing number of tracks available online. The track catalogues offered by these platforms are usually too big to be searched manually, and automatic recommendation algorithms might be implemented for helping users navigate on these platforms. More specifically, Music Recommendation Systems (MRS) are designed for analyzing user listening behaviours and for predicting the songs that will be played in the near future by one specific user or within a listening session. But in the case new tracks are added to a platform, also known as the cold-start problem, no listening data is available, and the system needs to somehow incorporate these tracks into its recommendation algorithms. In this work, we propose methods that leverage the audio associated with tracks that were recently added to streaming platforms as an alternative for compensating the lack of interaction data. Our propositions are elaborated considering collaborative filtering (CF), sequence-aware (SA), and stream-based (SB) recommendation systems, and audio files are considered represented as codeword histograms, Mel-spectrograms, and raw waveforms. In the first experiment, we propose a method that applies Convolutional Neural Networks (CNN) for mapping audio content to profiles containing the users who listened to a track. In a second experiment, Recurrent Neural Networks (RNN) are trained for reproducing the audio feature associated with the upcoming tracks within a listening session, given the audio feature associated with the current track. An inverted index structure is used for retrieving tracks given their estimated audio feature in an efficient way. In a third experiment, we propose a model that maps track/track transitions to an audio domain in a multi-level Markov Chain fashion. The method allows dynamic updates, allowing its application to scenarios of data streams. The experiments were conducted using the LFM-1b music consumption dataset, and audio previews downloaded from Spotify. Our methods presented competitive prediction results in situations of cold-start in the case of CF and SA recommendation systems. The novel stream-based method is able to recommend tracks with an accuracy that is comparable to the accuracy measured for conventional rating-based methods, being based exclusively on audio content.Plataformas de streaming de música se tornaram populares nas últimas décadas devido ao crescente número de faixas disponíveis on-line. Os catálogos de faixas oferecidos por estas plataformas são, geralmente, muito grandes para serem pesquisados manualmente, e algoritmos de recomendação automática podem ser implementados para ajudar os usuários a navegar nestas plataformas. Mais especificamente, Sistemas de Recomendação Musical (MRS) são projetados para analisar os comportamentos de escuta dos usuários e para prever as músicas que serão tocadas em um futuro próximo por um usuário específico ou dentro de uma sessão de escuta. Mas quando novas faixas são adicionadas a uma plataforma, também conhecido como problema de cold-start, os dados de audição não estão disponíveis e o sistema precisa incorporar estas faixas em seus algoritmos de alguma forma. Neste trabalho, propomos métodos que utilizam o áudio associado às faixas que foram recentemente adicionadas às plataformas de streaming como uma alternativa para compensar a falta de dados de interação. Nossas propostas são elaboradas considerando sistemas de recomendação baseados em Filtragem Colaborativa (CF), em sequências de dados de escuta (SA) e em stream de dados de escuta (SB). Os arquivos de áudio são considerados representados como histogramas de palavra-chave, mel-spectrogramas e formas de onda puras. Em um primeira experimento, propomos um método que aplica Convolutional Neural Networks (CNN) para mapear conteúdo de áudio a um perfil contendo os usuários que ouviram a uma faixa. Em um segundo experimento, Redes Neurais Recorrentes (RNN) são treinadas para reproduzir os conteúdos de áudio associados às próximas faixas dentro de uma sessão de escuta, dado o conteúdo de áudio associado à faixa atual. Uma estrutura de índice invertido é usada para a recuperação de faixas, dado seu conteúdo de áudio de forma eficiente. Em um terceiro experimento, propomos um modelo que mapeia as transições de faixa/faixa para um domínio de áudio utilizando uma cadeia de Markov de vários níveis. O método permite atualizações dinâmicas, permitindo sua aplicação a cenários de intenso fluxo de dados. Os experimentos foram conduzidos utilizando o conjunto de dados de consumo de música LFM-1b, e previews de áudio baixados de Spotify. Nossos métodos apresentaram resultados de previsão competitivos em situações de cold-start no caso de sistemas de recomendação CF e SA. O novo método baseado em fluxo é capaz de recomendar faixas com uma precisão comparável à precisão medida para métodos convencionais baseados em dados de escuta, sendo baseado exclusivamente no conteúdo de áudio.Biblioteca Digitais de Teses e Dissertações da USPQueiroz, Marcelo Gomes deBorges, Rodrigo Carvalho2022-07-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-14102022-124655/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-01-30T22:38:18Zoai:teses.usp.br:tde-14102022-124655Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-01-30T22:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Audio-based cold-start in music recommendation systems Sistemas de recomendação de música baseados em áudio |
title |
Audio-based cold-start in music recommendation systems |
spellingShingle |
Audio-based cold-start in music recommendation systems Borges, Rodrigo Carvalho Audio content Audio-based music recommendation Cold-start Conteúdo de áudio Music recommendation systems Sistemas de recomendação de música Sistemas de recomendação de música baseados em áudio |
title_short |
Audio-based cold-start in music recommendation systems |
title_full |
Audio-based cold-start in music recommendation systems |
title_fullStr |
Audio-based cold-start in music recommendation systems |
title_full_unstemmed |
Audio-based cold-start in music recommendation systems |
title_sort |
Audio-based cold-start in music recommendation systems |
author |
Borges, Rodrigo Carvalho |
author_facet |
Borges, Rodrigo Carvalho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Queiroz, Marcelo Gomes de |
dc.contributor.author.fl_str_mv |
Borges, Rodrigo Carvalho |
dc.subject.por.fl_str_mv |
Audio content Audio-based music recommendation Cold-start Conteúdo de áudio Music recommendation systems Sistemas de recomendação de música Sistemas de recomendação de música baseados em áudio |
topic |
Audio content Audio-based music recommendation Cold-start Conteúdo de áudio Music recommendation systems Sistemas de recomendação de música Sistemas de recomendação de música baseados em áudio |
description |
Music streaming platforms have become popular in the last decades due to the increasing number of tracks available online. The track catalogues offered by these platforms are usually too big to be searched manually, and automatic recommendation algorithms might be implemented for helping users navigate on these platforms. More specifically, Music Recommendation Systems (MRS) are designed for analyzing user listening behaviours and for predicting the songs that will be played in the near future by one specific user or within a listening session. But in the case new tracks are added to a platform, also known as the cold-start problem, no listening data is available, and the system needs to somehow incorporate these tracks into its recommendation algorithms. In this work, we propose methods that leverage the audio associated with tracks that were recently added to streaming platforms as an alternative for compensating the lack of interaction data. Our propositions are elaborated considering collaborative filtering (CF), sequence-aware (SA), and stream-based (SB) recommendation systems, and audio files are considered represented as codeword histograms, Mel-spectrograms, and raw waveforms. In the first experiment, we propose a method that applies Convolutional Neural Networks (CNN) for mapping audio content to profiles containing the users who listened to a track. In a second experiment, Recurrent Neural Networks (RNN) are trained for reproducing the audio feature associated with the upcoming tracks within a listening session, given the audio feature associated with the current track. An inverted index structure is used for retrieving tracks given their estimated audio feature in an efficient way. In a third experiment, we propose a model that maps track/track transitions to an audio domain in a multi-level Markov Chain fashion. The method allows dynamic updates, allowing its application to scenarios of data streams. The experiments were conducted using the LFM-1b music consumption dataset, and audio previews downloaded from Spotify. Our methods presented competitive prediction results in situations of cold-start in the case of CF and SA recommendation systems. The novel stream-based method is able to recommend tracks with an accuracy that is comparable to the accuracy measured for conventional rating-based methods, being based exclusively on audio content. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-14102022-124655/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-14102022-124655/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256975731064832 |