Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamento
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-23062015-142118/ |
Resumo: | Neste trabalho nós estudamos a equação de reação difusão com retardamento {∂U/∂t (t,x) = ∂2U/∂x2(t, x) + kU(t,x) + k/δ ∫-r + δ-r g(U(t,x), U(t + s, x)ds, U(t, 0) = U(t, π) = 0, t≥0 U(t,x) = ψ(t, x), (t, x) ∈ [-r, 0] X [0, π]. Nós mostramos a existência de uma sequência de valores {Tkn}n= 0,1,2... do parâmetro τ tal que uma bifurcação de Hopf ocorre quando o retardo passa através de cada valor {Tkn}. As técnicas principais usadas aqui são alguns resultados sobre problemas de autovalor não lineares, a análise da equação característica do problema linearizado, o método de Liapunov-Schmidt e o Teorema da Função Implícita. |
id |
USP_e37000b6dc991098c6064ed5ad63517a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-23062015-142118 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamentoHopf bifurcation for a class of partial differential equation with delayNão disponívelNot availableNeste trabalho nós estudamos a equação de reação difusão com retardamento {∂U/∂t (t,x) = ∂2U/∂x2(t, x) + kU(t,x) + k/δ ∫-r + δ-r g(U(t,x), U(t + s, x)ds, U(t, 0) = U(t, π) = 0, t≥0 U(t,x) = ψ(t, x), (t, x) ∈ [-r, 0] X [0, π]. Nós mostramos a existência de uma sequência de valores {Tkn}n= 0,1,2... do parâmetro τ tal que uma bifurcação de Hopf ocorre quando o retardo passa através de cada valor {Tkn}. As técnicas principais usadas aqui são alguns resultados sobre problemas de autovalor não lineares, a análise da equação característica do problema linearizado, o método de Liapunov-Schmidt e o Teorema da Função Implícita.In this work we study the retarded reaction-diffusion equation {∂U/∂t (t,x) = ∂2U/∂x2(t, x) + kU(t,x) + k/δ ∫-r + δ-r g(U(t,x), U(t + s, x)ds, U(t, 0) = U(t, π) = 0, t≥0 U(t,x) = ψ(t, x), (t, x) ∈ [-r, 0] X [0, π]. We show the existence of a sequence of values {Tkn}n= 0,1,2... of the parameter T such that a Hopf bifurcation occurs when the delay passes through each value {Tkn}. The main techniques used here are some results on nonlinear eigenvalue problems, the analysis of the characteristic equation of the linearized problem, the Liapunov-Schmidt method and the Implicit Function Theorem.Biblioteca Digitais de Teses e Dissertações da USPLadeira, Luiz Augusto da CostaAzevedo, Katia Andreia Gonçalves de2002-04-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-23062015-142118/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-23062015-142118Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamento Hopf bifurcation for a class of partial differential equation with delay |
title |
Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamento |
spellingShingle |
Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamento Azevedo, Katia Andreia Gonçalves de Não disponível Not available |
title_short |
Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamento |
title_full |
Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamento |
title_fullStr |
Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamento |
title_full_unstemmed |
Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamento |
title_sort |
Bifurcação de Hopf para uma classe de equações diferenciais parciais com retardamento |
author |
Azevedo, Katia Andreia Gonçalves de |
author_facet |
Azevedo, Katia Andreia Gonçalves de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ladeira, Luiz Augusto da Costa |
dc.contributor.author.fl_str_mv |
Azevedo, Katia Andreia Gonçalves de |
dc.subject.por.fl_str_mv |
Não disponível Not available |
topic |
Não disponível Not available |
description |
Neste trabalho nós estudamos a equação de reação difusão com retardamento {∂U/∂t (t,x) = ∂2U/∂x2(t, x) + kU(t,x) + k/δ ∫-r + δ-r g(U(t,x), U(t + s, x)ds, U(t, 0) = U(t, π) = 0, t≥0 U(t,x) = ψ(t, x), (t, x) ∈ [-r, 0] X [0, π]. Nós mostramos a existência de uma sequência de valores {Tkn}n= 0,1,2... do parâmetro τ tal que uma bifurcação de Hopf ocorre quando o retardo passa através de cada valor {Tkn}. As técnicas principais usadas aqui são alguns resultados sobre problemas de autovalor não lineares, a análise da equação característica do problema linearizado, o método de Liapunov-Schmidt e o Teorema da Função Implícita. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-04-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-23062015-142118/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-23062015-142118/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257365208891392 |