Coincidências: Problema dos aniversários e polinômios cromáticos

Detalhes bibliográficos
Autor(a) principal: Amato Neto, Luis
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/100/100132/tde-07022020-121851/
Resumo: Como discutido em Diaconis e Mosteller (1989), o problema dos aniversários é um ponto importante de partida no estudo de coincidências. Uma definição de coincidência é adotada, seguida de uma breve apresentação dos seus principais aspectos: entre eles a subjetividade e a surpresa. Na literatura são encontradas as principais variações do problema dos aniversários, que analisadas, fornecem as bases para um estudo do aspecto probabilístico das coincidências. Neste trabalho os eventos são associados a variáveis aleatórias independentes e igualmente distribuídas, ou seja, os problema são estudados por técnicas de contagem. Desta forma o problema clássico dos aniversários pode ser associado à coloração dos vértices de um grafo completo, assim como o problema do aniversariante pode ser associado à coloração dos vértices de um grafo estrela. A partir destas observações, é proposta a formulação de problema dos aniversários sujeito a restrições de uma rede de relacionamentos, que equivale a um problema da coloração própria dos vértices de um grafo simples, cuja topologia modela as restrições do problema original. O objetivo do trabalho é aplicar o conhecimento desenvolvido sobre polinômios cromáticos no estudo das coincidências associadas a problemas dos aniversários sujeito a restrições, Um resumo sobre teoria dos grafos e os principais resultados referentes a polinômios cromáticos são apresentados com o objetivo de dar clareza e consistência entre definições adotadas, teoremas utilizados e sua aplicação nos casos de árvores de Cayley, grafos Bollobas-Chung e redes sociais simples. A análise das coincidências se concentra na determinação do polinômio cromático e suas representações em diferentes bases, entre elas as formas: de potência, fatorial e de árvore. A decisão se um grafo pode ou não ser colorido de maneira própria com k > 2 cores é um problema de decisão NP-completo, portanto um objetivo secundário é analisar as limitações dos algoritmos existentes e dos sistemas disponíveis para de calculo de polinômios cromáticos, que possuem coeficientes inteiros e podem alcançar centenas de dígitos. Os cálculos e as simulações foram realizadas no Sage Mathematics Software (Linux Version 8.8). A conclusão demonstra que o conhecimento e as técnicas de polinômios cromáticos contribuem com a solução da generalização proposta do problema dos aniversários, sendo analisadas as limitações atuais quanto à eficácia dos algoritmos disponíveis e a capacidade computacional demandada pela topologia do grafo associado ao problema original
id USP_e4e811ea975b7d8d53471ded9d0fd97f
oai_identifier_str oai:teses.usp.br:tde-07022020-121851
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Coincidências: Problema dos aniversários e polinômios cromáticosCoincidences: birthday problem and chromatic polynomialsBirthday problemChromatic polynomialsCoincidencesCoincidênciasPolinômios cromáticosProblema dos aniversáriosComo discutido em Diaconis e Mosteller (1989), o problema dos aniversários é um ponto importante de partida no estudo de coincidências. Uma definição de coincidência é adotada, seguida de uma breve apresentação dos seus principais aspectos: entre eles a subjetividade e a surpresa. Na literatura são encontradas as principais variações do problema dos aniversários, que analisadas, fornecem as bases para um estudo do aspecto probabilístico das coincidências. Neste trabalho os eventos são associados a variáveis aleatórias independentes e igualmente distribuídas, ou seja, os problema são estudados por técnicas de contagem. Desta forma o problema clássico dos aniversários pode ser associado à coloração dos vértices de um grafo completo, assim como o problema do aniversariante pode ser associado à coloração dos vértices de um grafo estrela. A partir destas observações, é proposta a formulação de problema dos aniversários sujeito a restrições de uma rede de relacionamentos, que equivale a um problema da coloração própria dos vértices de um grafo simples, cuja topologia modela as restrições do problema original. O objetivo do trabalho é aplicar o conhecimento desenvolvido sobre polinômios cromáticos no estudo das coincidências associadas a problemas dos aniversários sujeito a restrições, Um resumo sobre teoria dos grafos e os principais resultados referentes a polinômios cromáticos são apresentados com o objetivo de dar clareza e consistência entre definições adotadas, teoremas utilizados e sua aplicação nos casos de árvores de Cayley, grafos Bollobas-Chung e redes sociais simples. A análise das coincidências se concentra na determinação do polinômio cromático e suas representações em diferentes bases, entre elas as formas: de potência, fatorial e de árvore. A decisão se um grafo pode ou não ser colorido de maneira própria com k > 2 cores é um problema de decisão NP-completo, portanto um objetivo secundário é analisar as limitações dos algoritmos existentes e dos sistemas disponíveis para de calculo de polinômios cromáticos, que possuem coeficientes inteiros e podem alcançar centenas de dígitos. Os cálculos e as simulações foram realizadas no Sage Mathematics Software (Linux Version 8.8). A conclusão demonstra que o conhecimento e as técnicas de polinômios cromáticos contribuem com a solução da generalização proposta do problema dos aniversários, sendo analisadas as limitações atuais quanto à eficácia dos algoritmos disponíveis e a capacidade computacional demandada pela topologia do grafo associado ao problema originalAs discussed in Diaconis e Mosteller (1989), the birthday problem is an important starting point in the study of coincidences. A definition of coincidence is adopted, followed by a brief presentation of its main aspects: subjectivity and surprise among them. In the literature, the main variations of the birthday problem are found, which analyzed, provide the basis for a study of the probabilistic aspect of coincidences. In this work the events are associated with independent and equally distributed random variables, that is, the problems are studied by counting techniques. Thus the classical birthday problem can be associated with the coloring of vertices of a complete graph, just as the birthmate problem can be associated with the coloring of the vertices of a star graph. From these observations, it is proposed a formulation of the birthday problem, subject to constraints of a relationships network, which is equivalent to a problem of proper coloring of the vertices of a simple graph, whose topology shapes the constraints of the original problem. The objective of this work is to apply the knowledge developed about chromatic polynomials in the study of coincidences associated with restricted birthday problems. A summary of graph theory and the main results concerning chromatic polynomials are presented with the purpose of providing clarity and consistency between adopted definitions, used theorems and their application in the case of Cayley trees, Bollobas-Chung graphs and simple social networks. The analysis of coincidences focuses on the determination of the chromatic polynomial and its representations in different bases, among them the power, factorial and tree bases. Whether or not a graph can be properly colored with k > 2 colors is an NP-complete decision problem, so a secondary objective is to analyze the limitations of existing algorithms and available systems for calculating chromatic polynomials, which have integer coefficients and can reach hundreds of digits. Calculations and simulations were performed in Sage Mathematics Software (Linux Version 8.8). The conclusion demonstrates that the knowledge and techniques of chromatic polynomials contribute to the solution of the proposed generalization of the birthdays problem, it is also analyzed the current limitations regarding the effectiveness of available algorithms and the computational capacity demanded by the graph topology associated with the original problemBiblioteca Digitais de Teses e Dissertações da USPMendonça, José Ricardo Gonçalves deAmato Neto, Luis2019-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/100/100132/tde-07022020-121851/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-02-14T16:38:01Zoai:teses.usp.br:tde-07022020-121851Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-02-14T16:38:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Coincidências: Problema dos aniversários e polinômios cromáticos
Coincidences: birthday problem and chromatic polynomials
title Coincidências: Problema dos aniversários e polinômios cromáticos
spellingShingle Coincidências: Problema dos aniversários e polinômios cromáticos
Amato Neto, Luis
Birthday problem
Chromatic polynomials
Coincidences
Coincidências
Polinômios cromáticos
Problema dos aniversários
title_short Coincidências: Problema dos aniversários e polinômios cromáticos
title_full Coincidências: Problema dos aniversários e polinômios cromáticos
title_fullStr Coincidências: Problema dos aniversários e polinômios cromáticos
title_full_unstemmed Coincidências: Problema dos aniversários e polinômios cromáticos
title_sort Coincidências: Problema dos aniversários e polinômios cromáticos
author Amato Neto, Luis
author_facet Amato Neto, Luis
author_role author
dc.contributor.none.fl_str_mv Mendonça, José Ricardo Gonçalves de
dc.contributor.author.fl_str_mv Amato Neto, Luis
dc.subject.por.fl_str_mv Birthday problem
Chromatic polynomials
Coincidences
Coincidências
Polinômios cromáticos
Problema dos aniversários
topic Birthday problem
Chromatic polynomials
Coincidences
Coincidências
Polinômios cromáticos
Problema dos aniversários
description Como discutido em Diaconis e Mosteller (1989), o problema dos aniversários é um ponto importante de partida no estudo de coincidências. Uma definição de coincidência é adotada, seguida de uma breve apresentação dos seus principais aspectos: entre eles a subjetividade e a surpresa. Na literatura são encontradas as principais variações do problema dos aniversários, que analisadas, fornecem as bases para um estudo do aspecto probabilístico das coincidências. Neste trabalho os eventos são associados a variáveis aleatórias independentes e igualmente distribuídas, ou seja, os problema são estudados por técnicas de contagem. Desta forma o problema clássico dos aniversários pode ser associado à coloração dos vértices de um grafo completo, assim como o problema do aniversariante pode ser associado à coloração dos vértices de um grafo estrela. A partir destas observações, é proposta a formulação de problema dos aniversários sujeito a restrições de uma rede de relacionamentos, que equivale a um problema da coloração própria dos vértices de um grafo simples, cuja topologia modela as restrições do problema original. O objetivo do trabalho é aplicar o conhecimento desenvolvido sobre polinômios cromáticos no estudo das coincidências associadas a problemas dos aniversários sujeito a restrições, Um resumo sobre teoria dos grafos e os principais resultados referentes a polinômios cromáticos são apresentados com o objetivo de dar clareza e consistência entre definições adotadas, teoremas utilizados e sua aplicação nos casos de árvores de Cayley, grafos Bollobas-Chung e redes sociais simples. A análise das coincidências se concentra na determinação do polinômio cromático e suas representações em diferentes bases, entre elas as formas: de potência, fatorial e de árvore. A decisão se um grafo pode ou não ser colorido de maneira própria com k > 2 cores é um problema de decisão NP-completo, portanto um objetivo secundário é analisar as limitações dos algoritmos existentes e dos sistemas disponíveis para de calculo de polinômios cromáticos, que possuem coeficientes inteiros e podem alcançar centenas de dígitos. Os cálculos e as simulações foram realizadas no Sage Mathematics Software (Linux Version 8.8). A conclusão demonstra que o conhecimento e as técnicas de polinômios cromáticos contribuem com a solução da generalização proposta do problema dos aniversários, sendo analisadas as limitações atuais quanto à eficácia dos algoritmos disponíveis e a capacidade computacional demandada pela topologia do grafo associado ao problema original
publishDate 2019
dc.date.none.fl_str_mv 2019-12-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/100/100132/tde-07022020-121851/
url https://www.teses.usp.br/teses/disponiveis/100/100132/tde-07022020-121851/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090470565904384