Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage information

Detalhes bibliográficos
Autor(a) principal: Gesteira, Gabriel de Siqueira
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11137/tde-10112021-123010/
Resumo: Forage crops are widespread across farmlands worldwide and primarily used to feed livestock, consisting of an important source of economic and environmental sustainability. One of the highest yielding grasses used as a forage crop is the guineagrass (Megathyrsus maximus Jacq.), which presents high nutritional quality and tolerance to many biotic and abiotic factors. The species combines the advantage of genetic recombination through sexual crosses with the ability to fix hybrid vigor in superior genotypes and propagate them by seeds via apomixis. However, little is known about its genomic behavior, mainly due to the high complexity of its autopolyploid genome. In this work, we implemented state-of-the-art methods to construct genetic linkage maps in autopolyploid species, coupled with a multipoint Hidden Markov Model approach. The software MAPpoly can construct genetic linkage maps for ploidy levels up to 12, import data from third-party software, and export maps and genotypic conditional probabilities for further analysis. MAPpoly is easy-to-use and freely available in stable and development versions. We used MAPpoly to construct a dense and informative genetic linkage map for M. maximus using multiple dosage markers, then used a state-of-the-art method to search for QTL along the genome considering relevant traits for M. maximus breeding: canopy height and area, total yield, proportion of leaf blades, foliar and total dry matter yield, leaf and total volumetric density, regrowth capacity, and leaf elongation rate. We extracted DNA from leaf samples of a biparental mapping population containing 224 individuals and sequenced them through the GBS (Genotyping-by-Sequencing) protocol. Raw sequencing data were analyzed to find variants and call genotype dosages for both parents and all individuals in the population. We used five reference genomes of related species during the mapping process due to the absence of a reference genome for M. maximus. Then, we constructed the genetic linkage map and used phenotypic observations of selected traits to isolate the genetic component of the population performance and search for QTL regions along the genome, using a random regression model. We constructed the densest and informative linkage map for the species up to date, with 7095 markers spanning 1746.18 cM of the species genome. There was no evidence of double reduction or preferential pairing in the study population. We found ten QTL associated with seven traits that are relevant to M. maximus breeding, with narrow-sense heritabilities ranging from 0.4127 to 0.1387. The software implementation and the genetic analysis provided in this work can help untangle the genomic organization and solve uncertainties regarding M. maximus evolutionary and taxonomic placement, as well as help to assemble the species genome. The QTL analysis provides a better understanding of the complex genomic behavior involved in the genetic control of relevant traits and may be used to support marker-based selection strategies, thus increasing the efficiency of selection cycles in M. maximus breeding programs.
id USP_e5116601b0e3a7983f32c9801a383915
oai_identifier_str oai:teses.usp.br:tde-10112021-123010
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage informationMapeamento genético em uma população biparental de Megathyrsus maximus (Jacq.) utilizando informação de dosagem alélicaAutotetraploidAutotetraploideForage cropForrageiraLinkage mapMapa de ligaçãoMapeamento de QTLPoliploidePolyploidQTL mappingForage crops are widespread across farmlands worldwide and primarily used to feed livestock, consisting of an important source of economic and environmental sustainability. One of the highest yielding grasses used as a forage crop is the guineagrass (Megathyrsus maximus Jacq.), which presents high nutritional quality and tolerance to many biotic and abiotic factors. The species combines the advantage of genetic recombination through sexual crosses with the ability to fix hybrid vigor in superior genotypes and propagate them by seeds via apomixis. However, little is known about its genomic behavior, mainly due to the high complexity of its autopolyploid genome. In this work, we implemented state-of-the-art methods to construct genetic linkage maps in autopolyploid species, coupled with a multipoint Hidden Markov Model approach. The software MAPpoly can construct genetic linkage maps for ploidy levels up to 12, import data from third-party software, and export maps and genotypic conditional probabilities for further analysis. MAPpoly is easy-to-use and freely available in stable and development versions. We used MAPpoly to construct a dense and informative genetic linkage map for M. maximus using multiple dosage markers, then used a state-of-the-art method to search for QTL along the genome considering relevant traits for M. maximus breeding: canopy height and area, total yield, proportion of leaf blades, foliar and total dry matter yield, leaf and total volumetric density, regrowth capacity, and leaf elongation rate. We extracted DNA from leaf samples of a biparental mapping population containing 224 individuals and sequenced them through the GBS (Genotyping-by-Sequencing) protocol. Raw sequencing data were analyzed to find variants and call genotype dosages for both parents and all individuals in the population. We used five reference genomes of related species during the mapping process due to the absence of a reference genome for M. maximus. Then, we constructed the genetic linkage map and used phenotypic observations of selected traits to isolate the genetic component of the population performance and search for QTL regions along the genome, using a random regression model. We constructed the densest and informative linkage map for the species up to date, with 7095 markers spanning 1746.18 cM of the species genome. There was no evidence of double reduction or preferential pairing in the study population. We found ten QTL associated with seven traits that are relevant to M. maximus breeding, with narrow-sense heritabilities ranging from 0.4127 to 0.1387. The software implementation and the genetic analysis provided in this work can help untangle the genomic organization and solve uncertainties regarding M. maximus evolutionary and taxonomic placement, as well as help to assemble the species genome. The QTL analysis provides a better understanding of the complex genomic behavior involved in the genetic control of relevant traits and may be used to support marker-based selection strategies, thus increasing the efficiency of selection cycles in M. maximus breeding programs.As forrageiras são amplamente difundidas e cultivadas em fazendas em todo o mundo, e utilizadas principalmente para alimentar o gado, constituindo em uma importante fonte de sustentabilidade econômica e ambiental. Uma das gramíneas de maior produtividade utilizadas como forrageira é o capim-colonião (Megathyrsus maximus Jacq.), que apresenta alta qualidade nutricional e tolerância a diversos fatores bióticos e abióticos. A espécie combina a vantagem da recombinação genética por meio de cruzamentos sexuais com a capacidade de fixar o vigor híbrido em genótipos superiores e propagá-los por sementes via apomixia. No entanto, pouco se sabe sobre seu comportamento genômico, principalmente devido à alta complexidade de seu genoma autopoliploide. Neste trabalho, implementamos métodos de última geração para construir mapas de ligação em espécies autopoliploides, combinados com uma abordagem multiponto HMM (Hidden Markov Model). O software MAPpoly pode construir mapas de ligação considerando níveis de ploidia até 12, importar dados de software de terceiros e exportar mapas e probabilidades condicionais dos genótipos para análises posteriores. O software MAPpoly é fácil de usar e está disponível gratuitamente em versões estáveis e de desenvolvimento. Utilizamos o MAPpoly para construir um mapa de ligação denso e informativo para M. maximus considerando marcadores com múltiplas dosagens alélicas, e utilizamos um método de última geração para procurar por QTLs no genoma considerando as características de maior relevância para o melhoramento de M. maximus: altura e área da touceira, produção de massa verde, proporção de lâmina foliar, produção de matéria seca foliar e total, densidade volumétrica foliar e total, capacidade de rebrota, e taxa de alongamento foliar. Extraímos o DNA de amostras de folhas de uma população de mapeamento biparental contendo 224 indivíduos e os sequenciamos por meio do protocolo GBS (Genotyping-by-Sequencing). Os dados brutos de sequenciamento foram analisados para encontrar variantes e estimar as dosagens alélicas para ambos os pais e todos os indivíduos da população. Cinco genomas de referência de espécies relacionadas foram utilizados durante o processo de mapeamento, devido à ausência de um genoma de referência para M. maximus. Em seguida, construímos um mapa de ligação e utilizamos observações fenotípicas das características fenotípicas mais relevantes para isolar o componente genético da população e buscar por QTLs ao longo do genoma, utilizando um modelo de regressão aleatório. Construímos o mapa de ligação mais denso e informativo para a espécie até o momento, com 7095 marcadores abrangendo 1746.18 cM do genoma. Não houve evidência de dupla redução ou pareamento preferencial na população considerada no estudo. Encontramos dez QTLs associados a sete características que são relevantes para o melhoramento de M. maximus, com herdabilidades no sentido restrito variando de 0.4127 a 0.1387. A implementação do software e as análises genéticas fornecidas neste trabalho podem ajudar a entender a organização genômica e resolver incertezas a respeito do posicionamento evolutivo e taxonômico de M. maximus, bem como auxiliar na construção de um genoma de referência para a espécie. A análise de QTLs fornece uma compreensão mais aprofundada a respeito do controle genético das características relevantes para a espécie, e pode ser utilizada para auxiliar na implementação e aprimoramento de estratégias de seleção baseadas em marcadores moleculares, aumentando a eficiência dos ciclos de seleção em programas de melhoramento de M. maximus.Biblioteca Digitais de Teses e Dissertações da USPGarcia, Antonio Augusto FrancoGesteira, Gabriel de Siqueira2021-08-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-10112021-123010/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPReter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.info:eu-repo/semantics/openAccesseng2023-08-02T13:36:23Zoai:teses.usp.br:tde-10112021-123010Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-02T13:36:23Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage information
Mapeamento genético em uma população biparental de Megathyrsus maximus (Jacq.) utilizando informação de dosagem alélica
title Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage information
spellingShingle Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage information
Gesteira, Gabriel de Siqueira
Autotetraploid
Autotetraploide
Forage crop
Forrageira
Linkage map
Mapa de ligação
Mapeamento de QTL
Poliploide
Polyploid
QTL mapping
title_short Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage information
title_full Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage information
title_fullStr Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage information
title_full_unstemmed Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage information
title_sort Genetic mapping in a biparental Megathyrsus maximus (Jacq.) population with allele dosage information
author Gesteira, Gabriel de Siqueira
author_facet Gesteira, Gabriel de Siqueira
author_role author
dc.contributor.none.fl_str_mv Garcia, Antonio Augusto Franco
dc.contributor.author.fl_str_mv Gesteira, Gabriel de Siqueira
dc.subject.por.fl_str_mv Autotetraploid
Autotetraploide
Forage crop
Forrageira
Linkage map
Mapa de ligação
Mapeamento de QTL
Poliploide
Polyploid
QTL mapping
topic Autotetraploid
Autotetraploide
Forage crop
Forrageira
Linkage map
Mapa de ligação
Mapeamento de QTL
Poliploide
Polyploid
QTL mapping
description Forage crops are widespread across farmlands worldwide and primarily used to feed livestock, consisting of an important source of economic and environmental sustainability. One of the highest yielding grasses used as a forage crop is the guineagrass (Megathyrsus maximus Jacq.), which presents high nutritional quality and tolerance to many biotic and abiotic factors. The species combines the advantage of genetic recombination through sexual crosses with the ability to fix hybrid vigor in superior genotypes and propagate them by seeds via apomixis. However, little is known about its genomic behavior, mainly due to the high complexity of its autopolyploid genome. In this work, we implemented state-of-the-art methods to construct genetic linkage maps in autopolyploid species, coupled with a multipoint Hidden Markov Model approach. The software MAPpoly can construct genetic linkage maps for ploidy levels up to 12, import data from third-party software, and export maps and genotypic conditional probabilities for further analysis. MAPpoly is easy-to-use and freely available in stable and development versions. We used MAPpoly to construct a dense and informative genetic linkage map for M. maximus using multiple dosage markers, then used a state-of-the-art method to search for QTL along the genome considering relevant traits for M. maximus breeding: canopy height and area, total yield, proportion of leaf blades, foliar and total dry matter yield, leaf and total volumetric density, regrowth capacity, and leaf elongation rate. We extracted DNA from leaf samples of a biparental mapping population containing 224 individuals and sequenced them through the GBS (Genotyping-by-Sequencing) protocol. Raw sequencing data were analyzed to find variants and call genotype dosages for both parents and all individuals in the population. We used five reference genomes of related species during the mapping process due to the absence of a reference genome for M. maximus. Then, we constructed the genetic linkage map and used phenotypic observations of selected traits to isolate the genetic component of the population performance and search for QTL regions along the genome, using a random regression model. We constructed the densest and informative linkage map for the species up to date, with 7095 markers spanning 1746.18 cM of the species genome. There was no evidence of double reduction or preferential pairing in the study population. We found ten QTL associated with seven traits that are relevant to M. maximus breeding, with narrow-sense heritabilities ranging from 0.4127 to 0.1387. The software implementation and the genetic analysis provided in this work can help untangle the genomic organization and solve uncertainties regarding M. maximus evolutionary and taxonomic placement, as well as help to assemble the species genome. The QTL analysis provides a better understanding of the complex genomic behavior involved in the genetic control of relevant traits and may be used to support marker-based selection strategies, thus increasing the efficiency of selection cycles in M. maximus breeding programs.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11137/tde-10112021-123010/
url https://www.teses.usp.br/teses/disponiveis/11/11137/tde-10112021-123010/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256554210852864