Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.

Detalhes bibliográficos
Autor(a) principal: Camarinha Filho, Jomar Antonio
Data de Publicação: 2002
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-02012003-135234/
Resumo: É muito comum encontrar nas áreas agronômica e biológica experimentos cujas observações são correlacionadas. Porém, tais correlações, em tese, podem estar associadas às parcelas ou às subparcelas, dependendo do plano experimental adotado. Além disso, a metodologia de modelos lineares mistos vem sendo utilizada com mais freqüência, principalmente após os trabalhos de Searle (1988), Searle at al. (1992), Wolfinger (1993b) entre outros. O sucesso do procedimento de modelagem está fortemente associado ao exame dos efeitos aleatórios que devem permanecer no modelo e na possibilidade de se introduzir, no modelo, estruturas de variâncias e covariâncias das variáveis aleatórias que, para o modelo linear misto, podem estar inseridas no resíduo e, também, na parte aleatória associada ao fator aleatório conhecido. Nesse contexto, o Teste da Razão de Verossimilhança e o Critério de Akaike podem auxiliar na tarefa de escolha do modelo mais apropriado para análise dos dados, além de permitir verificar que escolhas de modelos inadequadas acarretam em conclusões divergentes em relação aos efeitos fixos do modelo. Com o desenvolvimento do Proc Mixed do SAS (Littel at al. 1996), utilizado neste trabalho, a análise desses experimentos, tratada pela metodologia modelos lineares mistos, tornou-se mais usual e segura. Com a finalidade de se atingir o objetivo deste trabalho, utilizaram-se dois exemplos (A e B) sobre a resposta da produtividade de três cultivares de trigo, em relação a níveis de irrigação por aspersão line-source. Foram criados e analisados 29 modelos para o Exemplo A e 16 modelos para o Exemplo B. Pôde-se verificar, para cada um dos exemplos, que as conclusões em relação aos efeitos fixos se modificaram de acordo com o modelo adotado. Notou-se, também, que o Critério de Akaike deve ser visto com cautela. Ao se comparar modelos similares entre os dois exemplos, ratificou-se a importância de se programar corretamente no Proc Mixed. Nesse contexto, conclui-se que é fundamental conduzir a análise de experimentos de forma ampla, buscando vários modelos e verificando quais têm lógica em relação ao plano experimental, evitando erros ao término da análise.
id USP_e655b5b89acc95bf1dd7843729cae6a2
oai_identifier_str oai:teses.usp.br:tde-02012003-135234
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.Mixed linear models: structures of matrix of variances and covariances and selection of models.análise de variânciaanalysis of varianceapplied statisticsestatística aplicadalikelihoodlinear modelsmodelos linearesverossimilhançaÉ muito comum encontrar nas áreas agronômica e biológica experimentos cujas observações são correlacionadas. Porém, tais correlações, em tese, podem estar associadas às parcelas ou às subparcelas, dependendo do plano experimental adotado. Além disso, a metodologia de modelos lineares mistos vem sendo utilizada com mais freqüência, principalmente após os trabalhos de Searle (1988), Searle at al. (1992), Wolfinger (1993b) entre outros. O sucesso do procedimento de modelagem está fortemente associado ao exame dos efeitos aleatórios que devem permanecer no modelo e na possibilidade de se introduzir, no modelo, estruturas de variâncias e covariâncias das variáveis aleatórias que, para o modelo linear misto, podem estar inseridas no resíduo e, também, na parte aleatória associada ao fator aleatório conhecido. Nesse contexto, o Teste da Razão de Verossimilhança e o Critério de Akaike podem auxiliar na tarefa de escolha do modelo mais apropriado para análise dos dados, além de permitir verificar que escolhas de modelos inadequadas acarretam em conclusões divergentes em relação aos efeitos fixos do modelo. Com o desenvolvimento do Proc Mixed do SAS (Littel at al. 1996), utilizado neste trabalho, a análise desses experimentos, tratada pela metodologia modelos lineares mistos, tornou-se mais usual e segura. Com a finalidade de se atingir o objetivo deste trabalho, utilizaram-se dois exemplos (A e B) sobre a resposta da produtividade de três cultivares de trigo, em relação a níveis de irrigação por aspersão line-source. Foram criados e analisados 29 modelos para o Exemplo A e 16 modelos para o Exemplo B. Pôde-se verificar, para cada um dos exemplos, que as conclusões em relação aos efeitos fixos se modificaram de acordo com o modelo adotado. Notou-se, também, que o Critério de Akaike deve ser visto com cautela. Ao se comparar modelos similares entre os dois exemplos, ratificou-se a importância de se programar corretamente no Proc Mixed. Nesse contexto, conclui-se que é fundamental conduzir a análise de experimentos de forma ampla, buscando vários modelos e verificando quais têm lógica em relação ao plano experimental, evitando erros ao término da análise.In Biology and Agronomy, experiments that produce correlated observations are often found. Theoretically, these correlations may be associated with whole-plots or subplots, according to the chosen experimental design. Also, the mixed linear model methodology is now being used much more frequently, especially after the works of Searle (1988), Searle et al. (1992) and Wolfinger (1993b), among others. The success of the modeling procedure is strongly associated with the examination of the random effects that must remain within the model and the possibility of introducing variance-covariance structures of random variables in the model. In the case of the mixed linear model, they may be included in the residual error or in the random part which is associated with the known random factor. In this context, the Likelihood Ratio Test and Akaike's Information Criterion can help in choosing the most appropriate model for data analysis. They also enable the verification of inadequate choice of models which can lead to divergent conclusions regarding the fixed effects of the model. With the development of the SAS Mixed Procedure (Little at al. 1996), which was used in this work, analysis of these experiments, conducted through the mixed linear model methodology, has become more usual and secure. In order to achieve the target of this work, two examples were utilized (A and B) involving the productivity response of three varieties of wheat, in regards to irrigation levels by line-source aspersion. Twenty-nine models for Example A and 16 models for Example B were created and analyzed. For each example, it was verified that conclusions regarding fixed effects changed according to the model adopted. It was also verified that Akaike’s Information Criterion must be regarded with caution. When comparing similar models between the two examples, the importance of correct programming in the Mixed Procedure was confirmed. In this context, it can be concluded that it is fundamental to conduct the experiment analysis in an ample manner, looking for various models and verifying which ones make sense according to the experimental plan, thus avoiding errors at analysis completion.Biblioteca Digitais de Teses e Dissertações da USPBarbin, DecioCamarinha Filho, Jomar Antonio2002-09-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-02012003-135234/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:08:16Zoai:teses.usp.br:tde-02012003-135234Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:08:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.
Mixed linear models: structures of matrix of variances and covariances and selection of models.
title Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.
spellingShingle Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.
Camarinha Filho, Jomar Antonio
análise de variância
analysis of variance
applied statistics
estatística aplicada
likelihood
linear models
modelos lineares
verossimilhança
title_short Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.
title_full Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.
title_fullStr Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.
title_full_unstemmed Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.
title_sort Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos.
author Camarinha Filho, Jomar Antonio
author_facet Camarinha Filho, Jomar Antonio
author_role author
dc.contributor.none.fl_str_mv Barbin, Decio
dc.contributor.author.fl_str_mv Camarinha Filho, Jomar Antonio
dc.subject.por.fl_str_mv análise de variância
analysis of variance
applied statistics
estatística aplicada
likelihood
linear models
modelos lineares
verossimilhança
topic análise de variância
analysis of variance
applied statistics
estatística aplicada
likelihood
linear models
modelos lineares
verossimilhança
description É muito comum encontrar nas áreas agronômica e biológica experimentos cujas observações são correlacionadas. Porém, tais correlações, em tese, podem estar associadas às parcelas ou às subparcelas, dependendo do plano experimental adotado. Além disso, a metodologia de modelos lineares mistos vem sendo utilizada com mais freqüência, principalmente após os trabalhos de Searle (1988), Searle at al. (1992), Wolfinger (1993b) entre outros. O sucesso do procedimento de modelagem está fortemente associado ao exame dos efeitos aleatórios que devem permanecer no modelo e na possibilidade de se introduzir, no modelo, estruturas de variâncias e covariâncias das variáveis aleatórias que, para o modelo linear misto, podem estar inseridas no resíduo e, também, na parte aleatória associada ao fator aleatório conhecido. Nesse contexto, o Teste da Razão de Verossimilhança e o Critério de Akaike podem auxiliar na tarefa de escolha do modelo mais apropriado para análise dos dados, além de permitir verificar que escolhas de modelos inadequadas acarretam em conclusões divergentes em relação aos efeitos fixos do modelo. Com o desenvolvimento do Proc Mixed do SAS (Littel at al. 1996), utilizado neste trabalho, a análise desses experimentos, tratada pela metodologia modelos lineares mistos, tornou-se mais usual e segura. Com a finalidade de se atingir o objetivo deste trabalho, utilizaram-se dois exemplos (A e B) sobre a resposta da produtividade de três cultivares de trigo, em relação a níveis de irrigação por aspersão line-source. Foram criados e analisados 29 modelos para o Exemplo A e 16 modelos para o Exemplo B. Pôde-se verificar, para cada um dos exemplos, que as conclusões em relação aos efeitos fixos se modificaram de acordo com o modelo adotado. Notou-se, também, que o Critério de Akaike deve ser visto com cautela. Ao se comparar modelos similares entre os dois exemplos, ratificou-se a importância de se programar corretamente no Proc Mixed. Nesse contexto, conclui-se que é fundamental conduzir a análise de experimentos de forma ampla, buscando vários modelos e verificando quais têm lógica em relação ao plano experimental, evitando erros ao término da análise.
publishDate 2002
dc.date.none.fl_str_mv 2002-09-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-02012003-135234/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-02012003-135234/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256596102512640