Open Coloring Axiom e aplicações de colorações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55135/tde-17012024-121925/ |
Resumo: | Esta dissertação explora o Open Coloring Axiom (OCA) e suas aplicações. Esse axioma foi introduzido por Todorcevíc e pode ser visto como uma propriedade parecida com o Teorema de Ramsey, mas para a topologia dos reais. O OCA afirma que para qualquer coloração aberta para [S]2 com duas cores, existe um subconjunto S não enumerável dos reais tal que todos os seus pares tem cor 0, ou o S pode ser coberto por enumeráveis conjuntos cujos pares tem cor 1. Ao longo da dissertação, apresentamos aplicações para o OCA, as relações do OCA com outros axiomas e estudo de algumas possíveis formas de o generalizar. Também foi estudado técnicas de forcing com o intuito de provar que OCA é consistente com ZFC. Por fim, deixamos dois anexos que reúnem o estudo de grafos e o Teorema de Kuratowski, além da relação entre o CH e o Axioma de Luzin. |
id |
USP_e6b63701115bda9baa5809d99d9e974d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17012024-121925 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Open Coloring Axiom e aplicações de coloraçõesOpen Coloring Axiom and coloring applicationsGrafosGraphsJogos topológicosOpen coloring axiomOpen coloring axiomSet theoryTeoria dos conjuntosTopologiaTopological gamesTopologyEsta dissertação explora o Open Coloring Axiom (OCA) e suas aplicações. Esse axioma foi introduzido por Todorcevíc e pode ser visto como uma propriedade parecida com o Teorema de Ramsey, mas para a topologia dos reais. O OCA afirma que para qualquer coloração aberta para [S]2 com duas cores, existe um subconjunto S não enumerável dos reais tal que todos os seus pares tem cor 0, ou o S pode ser coberto por enumeráveis conjuntos cujos pares tem cor 1. Ao longo da dissertação, apresentamos aplicações para o OCA, as relações do OCA com outros axiomas e estudo de algumas possíveis formas de o generalizar. Também foi estudado técnicas de forcing com o intuito de provar que OCA é consistente com ZFC. Por fim, deixamos dois anexos que reúnem o estudo de grafos e o Teorema de Kuratowski, além da relação entre o CH e o Axioma de Luzin.This dissertation explores the Open Coloring Axiom (OCA) and its applications. This axiom was introduced by Todorcevíc and it can be viewed as a two dimensional property of perfect sets. The OCA states that for every open coloring of [S]2 with two colors, there exists an uncountable subset of S that all of its pairs have color 0, or else S can be covered by countably many sets that all of its pais have color 1. Throughout this dissertation, we present applications to the OCA, OCAs relationship with other axioms and we studied ways to generalize its statement. We also studied forcing techniques aiming to prove that OCA is consistent with ZFC. Finally, we present two attachments that gather results involving graphs and the Kuratowski Theorem, and the relationship between CH and Luzins axiom.Biblioteca Digitais de Teses e Dissertações da USPAurichi, Leandro FioriniSouza, Thales Sarinho Galvão Santos de2023-07-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-17012024-121925/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-01-17T14:34:03Zoai:teses.usp.br:tde-17012024-121925Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-01-17T14:34:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Open Coloring Axiom e aplicações de colorações Open Coloring Axiom and coloring applications |
title |
Open Coloring Axiom e aplicações de colorações |
spellingShingle |
Open Coloring Axiom e aplicações de colorações Souza, Thales Sarinho Galvão Santos de Grafos Graphs Jogos topológicos Open coloring axiom Open coloring axiom Set theory Teoria dos conjuntos Topologia Topological games Topology |
title_short |
Open Coloring Axiom e aplicações de colorações |
title_full |
Open Coloring Axiom e aplicações de colorações |
title_fullStr |
Open Coloring Axiom e aplicações de colorações |
title_full_unstemmed |
Open Coloring Axiom e aplicações de colorações |
title_sort |
Open Coloring Axiom e aplicações de colorações |
author |
Souza, Thales Sarinho Galvão Santos de |
author_facet |
Souza, Thales Sarinho Galvão Santos de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Aurichi, Leandro Fiorini |
dc.contributor.author.fl_str_mv |
Souza, Thales Sarinho Galvão Santos de |
dc.subject.por.fl_str_mv |
Grafos Graphs Jogos topológicos Open coloring axiom Open coloring axiom Set theory Teoria dos conjuntos Topologia Topological games Topology |
topic |
Grafos Graphs Jogos topológicos Open coloring axiom Open coloring axiom Set theory Teoria dos conjuntos Topologia Topological games Topology |
description |
Esta dissertação explora o Open Coloring Axiom (OCA) e suas aplicações. Esse axioma foi introduzido por Todorcevíc e pode ser visto como uma propriedade parecida com o Teorema de Ramsey, mas para a topologia dos reais. O OCA afirma que para qualquer coloração aberta para [S]2 com duas cores, existe um subconjunto S não enumerável dos reais tal que todos os seus pares tem cor 0, ou o S pode ser coberto por enumeráveis conjuntos cujos pares tem cor 1. Ao longo da dissertação, apresentamos aplicações para o OCA, as relações do OCA com outros axiomas e estudo de algumas possíveis formas de o generalizar. Também foi estudado técnicas de forcing com o intuito de provar que OCA é consistente com ZFC. Por fim, deixamos dois anexos que reúnem o estudo de grafos e o Teorema de Kuratowski, além da relação entre o CH e o Axioma de Luzin. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-17012024-121925/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-17012024-121925/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257090480930816 |