A função período para uma classe de sistemas hamiltonianos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-131546/ |
Resumo: | Este trabalho é uma generalização dos resultados do artigo Period Function for a Class of Hamiltonian Systems [CGM00], que estuda a função período para a classe de sistemas Hamiltonianos analíticos x= -H IND.Y, y=H IND.X cim hamiltoniana natural H (x, y) = F(x) +G(y) onde F é a energia cinética e G a energia potencial, e a origem é um centro não degenaro. Mais concretamente, se T(h) denota o peíodo da órbita periódica contida na curva de nível (H(x, y) = h, em [CGM00] é resolvido o problema inverso de caracteruzar todos os sistemas com umm dda função T analíti em sero. Generalizamos tal resultado para centros degenerados, caracterizando todos os sistemas hamiltonianos naturais analíticos em que G pode ter mínimo degenerado em sero, com uma dada função |
id |
USP_ea929a44e514509991144ab831c7f937 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-131546 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
A função período para uma classe de sistemas hamiltonianosnot availableSistemas HamiltonianosEste trabalho é uma generalização dos resultados do artigo Period Function for a Class of Hamiltonian Systems [CGM00], que estuda a função período para a classe de sistemas Hamiltonianos analíticos x= -H IND.Y, y=H IND.X cim hamiltoniana natural H (x, y) = F(x) +G(y) onde F é a energia cinética e G a energia potencial, e a origem é um centro não degenaro. Mais concretamente, se T(h) denota o peíodo da órbita periódica contida na curva de nível (H(x, y) = h, em [CGM00] é resolvido o problema inverso de caracteruzar todos os sistemas com umm dda função T analíti em sero. Generalizamos tal resultado para centros degenerados, caracterizando todos os sistemas hamiltonianos naturais analíticos em que G pode ter mínimo degenerado em sero, com uma dada funçãonot availableBiblioteca Digitais de Teses e Dissertações da USPGarcia, Sônia Regina LeiteSilva, Emivan Ferreira da2002-11-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-131546/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:07:52Zoai:teses.usp.br:tde-20210729-131546Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:07:52Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
A função período para uma classe de sistemas hamiltonianos not available |
title |
A função período para uma classe de sistemas hamiltonianos |
spellingShingle |
A função período para uma classe de sistemas hamiltonianos Silva, Emivan Ferreira da Sistemas Hamiltonianos |
title_short |
A função período para uma classe de sistemas hamiltonianos |
title_full |
A função período para uma classe de sistemas hamiltonianos |
title_fullStr |
A função período para uma classe de sistemas hamiltonianos |
title_full_unstemmed |
A função período para uma classe de sistemas hamiltonianos |
title_sort |
A função período para uma classe de sistemas hamiltonianos |
author |
Silva, Emivan Ferreira da |
author_facet |
Silva, Emivan Ferreira da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Garcia, Sônia Regina Leite |
dc.contributor.author.fl_str_mv |
Silva, Emivan Ferreira da |
dc.subject.por.fl_str_mv |
Sistemas Hamiltonianos |
topic |
Sistemas Hamiltonianos |
description |
Este trabalho é uma generalização dos resultados do artigo Period Function for a Class of Hamiltonian Systems [CGM00], que estuda a função período para a classe de sistemas Hamiltonianos analíticos x= -H IND.Y, y=H IND.X cim hamiltoniana natural H (x, y) = F(x) +G(y) onde F é a energia cinética e G a energia potencial, e a origem é um centro não degenaro. Mais concretamente, se T(h) denota o peíodo da órbita periódica contida na curva de nível (H(x, y) = h, em [CGM00] é resolvido o problema inverso de caracteruzar todos os sistemas com umm dda função T analíti em sero. Generalizamos tal resultado para centros degenerados, caracterizando todos os sistemas hamiltonianos naturais analíticos em que G pode ter mínimo degenerado em sero, com uma dada função |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-11-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-131546/ |
url |
https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-131546/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1826318884651663360 |