Risk premia estimation in Brazil: wait until 2041
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/12/12138/tde-23082016-103818/ |
Resumo: | The estimation results of Brazilian risk premia are not robust in the literature. For instance, among the 133 market risk premium estimates reported on the literature, 41 are positives, 18 are negatives and the remainder are not significant. In this study, we investigate the grounds for this lack of consensus. First of all, we analyze the sensitivity of the US risk premia estimation to two relevant constraints present in the Brazilian market: the small number of assets (137 eligible stocks) and the short time-series sample available for estimation (14 years). We conclude that the second constrain, small T, has greater impact on the results. Following, we evaluate the two potential causes of problems for the risk premia estimation with small T: i) small sample bias on betas; ii) divergence between ex-post and ex-ante risk premia. Through Monte Carlo simulations, we conclude that for the T available for Brazil, the betas estimates are no longer a problem. However, it is necessary to wait until 2041 to be able to estimate ex-ante risk premia with Brazilian data. |
id |
USP_ebaaa1ec1eaab4dbfe404a96fb8182ce |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-23082016-103818 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Risk premia estimation in Brazil: wait until 2041Estimação de prêmios de risco no Brasil: aguarde até 2041Asset pricingModelos multifatoriais.Multi-factor modelPrecificação de ativosPrêmios de riscoRiscoRiskRisk premiaThe estimation results of Brazilian risk premia are not robust in the literature. For instance, among the 133 market risk premium estimates reported on the literature, 41 are positives, 18 are negatives and the remainder are not significant. In this study, we investigate the grounds for this lack of consensus. First of all, we analyze the sensitivity of the US risk premia estimation to two relevant constraints present in the Brazilian market: the small number of assets (137 eligible stocks) and the short time-series sample available for estimation (14 years). We conclude that the second constrain, small T, has greater impact on the results. Following, we evaluate the two potential causes of problems for the risk premia estimation with small T: i) small sample bias on betas; ii) divergence between ex-post and ex-ante risk premia. Through Monte Carlo simulations, we conclude that for the T available for Brazil, the betas estimates are no longer a problem. However, it is necessary to wait until 2041 to be able to estimate ex-ante risk premia with Brazilian data.Os resultados das estimações de prêmios de risco brasileiros não são robustos na literatura. Por exemplo, dentre 133 estimativas de prêmio de risco de mercado documentadas, 41 são positivas, 18 negativas e o restante não é significante. No presente trabalho, investigamos os motivos da falta de consenso. Primeiramente, analisamos a sensibilidade da estimação dos prêmios de risco norte-americanos a duas restrições presentes no mercado brasileiro: o baixo número de ativos (137 ações elegíveis) e a pequena quantidade de meses disponíveis para estimação (14 anos). Concluímos que a segunda restrição, T pequeno, tem maior impacto sobre os resultados. Em seguida, avaliamos as duas potenciais causas de problemas para a estimação de prêmios de risco em amostras com T pequeno: i) viés de pequenas amostras nas estimativas dos betas; e ii) divergência entre prêmio de risco ex-post e ex-ante. Através de exercícios de Monte Carlo, concluímos que para o T disponível no Brasil, a estimativa dos betas já não é mais um problema. No entanto, ainda precisamos esperar até 2041 para conseguirmos estimar corretamente os prêmios ex-ante com os dados brasileiros.Biblioteca Digitais de Teses e Dissertações da USPGiovannetti, Bruno CaraCavalcante Filho, Elias2016-06-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/12/12138/tde-23082016-103818/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2017-09-04T21:05:29Zoai:teses.usp.br:tde-23082016-103818Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Risk premia estimation in Brazil: wait until 2041 Estimação de prêmios de risco no Brasil: aguarde até 2041 |
title |
Risk premia estimation in Brazil: wait until 2041 |
spellingShingle |
Risk premia estimation in Brazil: wait until 2041 Cavalcante Filho, Elias Asset pricing Modelos multifatoriais. Multi-factor model Precificação de ativos Prêmios de risco Risco Risk Risk premia |
title_short |
Risk premia estimation in Brazil: wait until 2041 |
title_full |
Risk premia estimation in Brazil: wait until 2041 |
title_fullStr |
Risk premia estimation in Brazil: wait until 2041 |
title_full_unstemmed |
Risk premia estimation in Brazil: wait until 2041 |
title_sort |
Risk premia estimation in Brazil: wait until 2041 |
author |
Cavalcante Filho, Elias |
author_facet |
Cavalcante Filho, Elias |
author_role |
author |
dc.contributor.none.fl_str_mv |
Giovannetti, Bruno Cara |
dc.contributor.author.fl_str_mv |
Cavalcante Filho, Elias |
dc.subject.por.fl_str_mv |
Asset pricing Modelos multifatoriais. Multi-factor model Precificação de ativos Prêmios de risco Risco Risk Risk premia |
topic |
Asset pricing Modelos multifatoriais. Multi-factor model Precificação de ativos Prêmios de risco Risco Risk Risk premia |
description |
The estimation results of Brazilian risk premia are not robust in the literature. For instance, among the 133 market risk premium estimates reported on the literature, 41 are positives, 18 are negatives and the remainder are not significant. In this study, we investigate the grounds for this lack of consensus. First of all, we analyze the sensitivity of the US risk premia estimation to two relevant constraints present in the Brazilian market: the small number of assets (137 eligible stocks) and the short time-series sample available for estimation (14 years). We conclude that the second constrain, small T, has greater impact on the results. Following, we evaluate the two potential causes of problems for the risk premia estimation with small T: i) small sample bias on betas; ii) divergence between ex-post and ex-ante risk premia. Through Monte Carlo simulations, we conclude that for the T available for Brazil, the betas estimates are no longer a problem. However, it is necessary to wait until 2041 to be able to estimate ex-ante risk premia with Brazilian data. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/12/12138/tde-23082016-103818/ |
url |
http://www.teses.usp.br/teses/disponiveis/12/12138/tde-23082016-103818/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256564051738624 |