Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.

Detalhes bibliográficos
Autor(a) principal: Alves, Gustavo Marcati Alexandrino
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3140/tde-01032019-103058/
Resumo: A miniaturização de elementos mecânicos como pontes e vigas por meio de processos de fabricação antes utilizados exclusivamente em microeletrônica, levou ao desenvolvimento de sensores físicos que hoje são onipresentes no dia-dia. Desses elementos, o cantilever, ou viga engastada, é a estrutura mais simples, porém, quando miniaturizado em escala micrométrica, suas propriedades mecânicas como frequência de ressonância e curvatura são muito sensíveis a eventos que ocorrem em sua superfície. Stresses superficiais mínimos, como aqueles gerados pela adsorção de monocamadas na superfície, causam deflexões em uma escala que é facilmente medida com técnicas relativamente simples. Além disso, a frequência de ressonância que é característica da estrutura, é proporcional à mudanças relativas de massa do dispositivo, sendo possível assim, a medida de massa em baixíssimas escalas. Nesse trabalho, estudou-se a utilização do microcantilever como uma plataforma para estudo de materiais, mais especificamente, materiais poliméricos. Depositando-se uma quantidade muito pequena de polímero na superfície de um microcantilever de silício, essa estrutura se curvará devido à diferenças nos coeficientes de expansão térmico entre os materiais. Medindo-se essa curvatura em função da temperatura, é possível detectar eventos térmicos que esse polímero venha sofrer. Esse efeito foi utilizado para estudar como a absorção de água afeta o evento térmico de transição vítrea do polímero PLGA. Observou-se que essa caracterização é muito mais rápida utilizando microcantilever se comparado às técnicas convencionais, além de ser também, muito sensível às variações de quantidade de água. Para a realização desses estudos, foi desenvolvido um sistema de medidas que utiliza pick-up de CDROM, retirada de um leitor comum, para medir a deflexão dos dispositivos. Esse tipo de arranjo é capaz de medir diferenças de nanômetros de deslocamento com um custo mínimo. Explorou-se a capacidade de controle de temperatura e leitura de deslocamento aplicando-se a técnica de modulação de temperatura nos estudos de eventos térmicos do PLGA. Observou-se que a modulação de temperatura é aplicável a esse tipo de medida e resultados muito semelhantes àqueles obtidos com técnicas convencionais são obtidos com uma quantidade muito menor de material. Como essas medidas foram realizadas utilizando sensores comerciais, realizamos a construção de matrizes de cantileveres no laboratório para demonstrar completo desenvolvimento desse tipo de plataforma de sensor. Empregando um polímero fotossensível relativamente novo para o desenvolvimento dessas matrizes, às utilizamos para caracterizações das propriedades mecânicas desse material.
id USP_ebc0705e7f34f29dd40096870dc675be
oai_identifier_str oai:teses.usp.br:tde-01032019-103058
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.Micromechanical devices for materials characterization: instrumentation and polymer thermal analysis.BiomateriaisMEMSMicrocantileverMicroeletrônicaMicrofabricationPLGAPropriedades dos materiaisResonatorsSistemas microeletrômecânicosTemperature modulationThermal analysis, PolymerA miniaturização de elementos mecânicos como pontes e vigas por meio de processos de fabricação antes utilizados exclusivamente em microeletrônica, levou ao desenvolvimento de sensores físicos que hoje são onipresentes no dia-dia. Desses elementos, o cantilever, ou viga engastada, é a estrutura mais simples, porém, quando miniaturizado em escala micrométrica, suas propriedades mecânicas como frequência de ressonância e curvatura são muito sensíveis a eventos que ocorrem em sua superfície. Stresses superficiais mínimos, como aqueles gerados pela adsorção de monocamadas na superfície, causam deflexões em uma escala que é facilmente medida com técnicas relativamente simples. Além disso, a frequência de ressonância que é característica da estrutura, é proporcional à mudanças relativas de massa do dispositivo, sendo possível assim, a medida de massa em baixíssimas escalas. Nesse trabalho, estudou-se a utilização do microcantilever como uma plataforma para estudo de materiais, mais especificamente, materiais poliméricos. Depositando-se uma quantidade muito pequena de polímero na superfície de um microcantilever de silício, essa estrutura se curvará devido à diferenças nos coeficientes de expansão térmico entre os materiais. Medindo-se essa curvatura em função da temperatura, é possível detectar eventos térmicos que esse polímero venha sofrer. Esse efeito foi utilizado para estudar como a absorção de água afeta o evento térmico de transição vítrea do polímero PLGA. Observou-se que essa caracterização é muito mais rápida utilizando microcantilever se comparado às técnicas convencionais, além de ser também, muito sensível às variações de quantidade de água. Para a realização desses estudos, foi desenvolvido um sistema de medidas que utiliza pick-up de CDROM, retirada de um leitor comum, para medir a deflexão dos dispositivos. Esse tipo de arranjo é capaz de medir diferenças de nanômetros de deslocamento com um custo mínimo. Explorou-se a capacidade de controle de temperatura e leitura de deslocamento aplicando-se a técnica de modulação de temperatura nos estudos de eventos térmicos do PLGA. Observou-se que a modulação de temperatura é aplicável a esse tipo de medida e resultados muito semelhantes àqueles obtidos com técnicas convencionais são obtidos com uma quantidade muito menor de material. Como essas medidas foram realizadas utilizando sensores comerciais, realizamos a construção de matrizes de cantileveres no laboratório para demonstrar completo desenvolvimento desse tipo de plataforma de sensor. Empregando um polímero fotossensível relativamente novo para o desenvolvimento dessas matrizes, às utilizamos para caracterizações das propriedades mecânicas desse material.The miniaturization of mechanical elements such as bridges or beams employing fabrication process previously used exclusively in microelectronics, resulted in the development of ubiquous physical sensors used today. The cantilever, or single supported beam is the most simple of these structures, but, when miniaturizated in the micrometer scale, the properties of the structure are highly dependent on events that takes place in its surface. Minimal superficial stresses like the ones generated by the adsorption of monolayers causes deflection of the structure in a scale that are easily measured by simple techniques. Moreover, the resonant frequency is highly dependent on relative mass changes of the device, making it a very sensitive microbalance. In this work, it was studied the application of microcantilevers as a platform for the study of materials properties, more specifically thermal analysis of polymeric material. When a very small quanitity of polymer is deposited in the surface of a silicon microcantilever, the structure will bend due to the mismatch of thermal expansion between the materials. Measuring the beam curvature in function of temperature enables the detection of thermal events suffered by the polymer. This effect was used to measure how the water absorption by the polymer affect the glass transition thermal event of the PLGA polymer. It was observed that this technique is faster if compared to traditional thermal chracterization techniques. To enable those characterizations, it was developed a measurement systems based on CDROM pick-up that can read the nanometer scale cantilever deflection with a minimum cost. The full capabilities of this system was then used to apply temperature modulation to the thermal studies of PLGA, we observed similar responses if compared to traditional approaches but with much less material use. Comercial sensors were used on these characterization, but, to present complet domain of cantilever sensor platform, we developed a fabrication process of polymeric cantilever array at the lab. These arrays were then used to extract mechanical information about the polymer used in its construction.Biblioteca Digitais de Teses e Dissertações da USPMansano, Ronaldo DominguesAlves, Gustavo Marcati Alexandrino2018-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3140/tde-01032019-103058/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-09T23:21:59Zoai:teses.usp.br:tde-01032019-103058Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.
Micromechanical devices for materials characterization: instrumentation and polymer thermal analysis.
title Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.
spellingShingle Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.
Alves, Gustavo Marcati Alexandrino
Biomateriais
MEMS
Microcantilever
Microeletrônica
Microfabrication
PLGA
Propriedades dos materiais
Resonators
Sistemas microeletrômecânicos
Temperature modulation
Thermal analysis, Polymer
title_short Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.
title_full Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.
title_fullStr Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.
title_full_unstemmed Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.
title_sort Dispositivos micromecânicos para caracterização de materiais: instrumentação e análise térmica de polí­meros.
author Alves, Gustavo Marcati Alexandrino
author_facet Alves, Gustavo Marcati Alexandrino
author_role author
dc.contributor.none.fl_str_mv Mansano, Ronaldo Domingues
dc.contributor.author.fl_str_mv Alves, Gustavo Marcati Alexandrino
dc.subject.por.fl_str_mv Biomateriais
MEMS
Microcantilever
Microeletrônica
Microfabrication
PLGA
Propriedades dos materiais
Resonators
Sistemas microeletrômecânicos
Temperature modulation
Thermal analysis, Polymer
topic Biomateriais
MEMS
Microcantilever
Microeletrônica
Microfabrication
PLGA
Propriedades dos materiais
Resonators
Sistemas microeletrômecânicos
Temperature modulation
Thermal analysis, Polymer
description A miniaturização de elementos mecânicos como pontes e vigas por meio de processos de fabricação antes utilizados exclusivamente em microeletrônica, levou ao desenvolvimento de sensores físicos que hoje são onipresentes no dia-dia. Desses elementos, o cantilever, ou viga engastada, é a estrutura mais simples, porém, quando miniaturizado em escala micrométrica, suas propriedades mecânicas como frequência de ressonância e curvatura são muito sensíveis a eventos que ocorrem em sua superfície. Stresses superficiais mínimos, como aqueles gerados pela adsorção de monocamadas na superfície, causam deflexões em uma escala que é facilmente medida com técnicas relativamente simples. Além disso, a frequência de ressonância que é característica da estrutura, é proporcional à mudanças relativas de massa do dispositivo, sendo possível assim, a medida de massa em baixíssimas escalas. Nesse trabalho, estudou-se a utilização do microcantilever como uma plataforma para estudo de materiais, mais especificamente, materiais poliméricos. Depositando-se uma quantidade muito pequena de polímero na superfície de um microcantilever de silício, essa estrutura se curvará devido à diferenças nos coeficientes de expansão térmico entre os materiais. Medindo-se essa curvatura em função da temperatura, é possível detectar eventos térmicos que esse polímero venha sofrer. Esse efeito foi utilizado para estudar como a absorção de água afeta o evento térmico de transição vítrea do polímero PLGA. Observou-se que essa caracterização é muito mais rápida utilizando microcantilever se comparado às técnicas convencionais, além de ser também, muito sensível às variações de quantidade de água. Para a realização desses estudos, foi desenvolvido um sistema de medidas que utiliza pick-up de CDROM, retirada de um leitor comum, para medir a deflexão dos dispositivos. Esse tipo de arranjo é capaz de medir diferenças de nanômetros de deslocamento com um custo mínimo. Explorou-se a capacidade de controle de temperatura e leitura de deslocamento aplicando-se a técnica de modulação de temperatura nos estudos de eventos térmicos do PLGA. Observou-se que a modulação de temperatura é aplicável a esse tipo de medida e resultados muito semelhantes àqueles obtidos com técnicas convencionais são obtidos com uma quantidade muito menor de material. Como essas medidas foram realizadas utilizando sensores comerciais, realizamos a construção de matrizes de cantileveres no laboratório para demonstrar completo desenvolvimento desse tipo de plataforma de sensor. Empregando um polímero fotossensível relativamente novo para o desenvolvimento dessas matrizes, às utilizamos para caracterizações das propriedades mecânicas desse material.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3140/tde-01032019-103058/
url http://www.teses.usp.br/teses/disponiveis/3/3140/tde-01032019-103058/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090269257138176