Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybrids

Detalhes bibliográficos
Autor(a) principal: Lyra, Danilo Hottis
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11137/tde-22032018-131222/
Resumo: Genomic prediction of single-crosses is a promising tool in maize breeding, increasing genetics gains and reducing selection time. A strategy that can increase accuracy is applying multiple-trait genomic prediction using selection indices, which take into account the performance under optimal and stress conditions. Moreover, factors such as dominance, structural variants, and population structure can influence the accuracy of estimates of genomic breeding values (GEBV). Therefore, the objectives were to apply genomic prediction (i) including multi-trait models, (ii) incorporating dominance deviation and copy number variation effects, and (iii) controlling population structure in maize hybrids. Hence, we used two maize datasets (HELIX and USP), consisting of 452 and 906 maize single-crosses. The traits evaluated were grain yield, plant and ear height, stay green, and four selection indices. From multi-trait GBLUP and GK, using the combination of selection indices in MTGP is a viable alternative, increasing the selective accuracy. Furthermore, our results suggest that the best approach is predicting hybrids including dominance deviation, mainly for complex traits. We also observed including copy number variation effects seems to be suitable, due to the increase of prediction accuracies and reduction of model bias. On the other hand, adding four different sets of population structure as fixed covariates to GBLUP did not improve the prediction accuracy for grain yield and plant height. However, using nonmetric multidimensional scaling dimensions and fineSTRUCTURE group clustering increased reliability of the GEBV for GY and PH, respectively.
id USP_ebd8649c77ebc18991bfca76bb8f5e5d
oai_identifier_str oai:teses.usp.br:tde-22032018-131222
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybridsInfluência da modelagem multi-trait, dominância, e estruturação populacional na predição genômica em híbridos de milhoCopy number variationEfeitos não-aditivosGaussian kernelKernel GaussianoMilho tropicalNon-additive effectsTropical maizeVariação no número de cópiaGenomic prediction of single-crosses is a promising tool in maize breeding, increasing genetics gains and reducing selection time. A strategy that can increase accuracy is applying multiple-trait genomic prediction using selection indices, which take into account the performance under optimal and stress conditions. Moreover, factors such as dominance, structural variants, and population structure can influence the accuracy of estimates of genomic breeding values (GEBV). Therefore, the objectives were to apply genomic prediction (i) including multi-trait models, (ii) incorporating dominance deviation and copy number variation effects, and (iii) controlling population structure in maize hybrids. Hence, we used two maize datasets (HELIX and USP), consisting of 452 and 906 maize single-crosses. The traits evaluated were grain yield, plant and ear height, stay green, and four selection indices. From multi-trait GBLUP and GK, using the combination of selection indices in MTGP is a viable alternative, increasing the selective accuracy. Furthermore, our results suggest that the best approach is predicting hybrids including dominance deviation, mainly for complex traits. We also observed including copy number variation effects seems to be suitable, due to the increase of prediction accuracies and reduction of model bias. On the other hand, adding four different sets of population structure as fixed covariates to GBLUP did not improve the prediction accuracy for grain yield and plant height. However, using nonmetric multidimensional scaling dimensions and fineSTRUCTURE group clustering increased reliability of the GEBV for GY and PH, respectively.Predição genômica de híbridos simples é uma promissora ferramenta no melhoramento de milho, pois permite aumentar os ganhos genéticos por unidade de tempo, principalmente por reduzir o tempo de seleção. Uma estratégia que pode aumentar a acurácia das predições genômicas é realizar esta para múltiplos caracteres considerando os mesmos simultâneamente, ou utilizar índices de seleção, os quais captam a performance dos genótipos tanto em condições ótimas como em condições de estresse. Além disso, fatores como dominância, variantes estruturais, e estruturação populacional podem influenciar a acurácia de estimativas dos valores genéticos genômicos (VGG). Portanto, os objetivos foram aplicar predição genômica em híbridos de milho (i) incluindo modelos multi-trait, (ii) incorporando desvios de dominância e efeitos da variação no número de cópias, e (iii) controlando a estruturação populacional. Para isto, dois conjuntos de milho (HELIX e USP) foram utilizados, consistindo de 452 e 906 híbridos simples. Os caracteres avaliados foram produtividade de grãos, altura de planta e espiga, senescência, e quatro índices de seleção. A partir das análises multi-trait dos modelos GBLUP e GK, pôde-se concluir que a combinação dos índices é uma alternativa viável, aumentando a acurácia seletiva. Além disso, os resultados sugerem que o melhor método é a predição de híbridos incluindo desvios de dominância, principalmente para caracteres complexos. Observou-se também que incluir efeitos relacionados a variação no número de cópias indica ser adequado, devido ao aumento da acurácia e redução do viés nos modelos de predição genômica. Por outro lado, a acurácia de predição não aumentou quando se adicionou quatro diferentes conjuntos de estruturação como covariáveis fixas no modelo GBLUP. No entanto, usando o escalonamento multidimensional não métrico e o agrupamento do fineSTRUCTURE aumentaram a confiabilidade de estimação do VGG para produtividade de grãos e altura de plantas, respectivamente.Biblioteca Digitais de Teses e Dissertações da USPFritsche Neto, RobertoLyra, Danilo Hottis2017-11-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11137/tde-22032018-131222/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-04-09T16:00:08Zoai:teses.usp.br:tde-22032018-131222Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-04-09T16:00:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybrids
Influência da modelagem multi-trait, dominância, e estruturação populacional na predição genômica em híbridos de milho
title Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybrids
spellingShingle Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybrids
Lyra, Danilo Hottis
Copy number variation
Efeitos não-aditivos
Gaussian kernel
Kernel Gaussiano
Milho tropical
Non-additive effects
Tropical maize
Variação no número de cópia
title_short Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybrids
title_full Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybrids
title_fullStr Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybrids
title_full_unstemmed Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybrids
title_sort Influence of multi-trait modeling, dominance, and population structure in genomic prediction of maize hybrids
author Lyra, Danilo Hottis
author_facet Lyra, Danilo Hottis
author_role author
dc.contributor.none.fl_str_mv Fritsche Neto, Roberto
dc.contributor.author.fl_str_mv Lyra, Danilo Hottis
dc.subject.por.fl_str_mv Copy number variation
Efeitos não-aditivos
Gaussian kernel
Kernel Gaussiano
Milho tropical
Non-additive effects
Tropical maize
Variação no número de cópia
topic Copy number variation
Efeitos não-aditivos
Gaussian kernel
Kernel Gaussiano
Milho tropical
Non-additive effects
Tropical maize
Variação no número de cópia
description Genomic prediction of single-crosses is a promising tool in maize breeding, increasing genetics gains and reducing selection time. A strategy that can increase accuracy is applying multiple-trait genomic prediction using selection indices, which take into account the performance under optimal and stress conditions. Moreover, factors such as dominance, structural variants, and population structure can influence the accuracy of estimates of genomic breeding values (GEBV). Therefore, the objectives were to apply genomic prediction (i) including multi-trait models, (ii) incorporating dominance deviation and copy number variation effects, and (iii) controlling population structure in maize hybrids. Hence, we used two maize datasets (HELIX and USP), consisting of 452 and 906 maize single-crosses. The traits evaluated were grain yield, plant and ear height, stay green, and four selection indices. From multi-trait GBLUP and GK, using the combination of selection indices in MTGP is a viable alternative, increasing the selective accuracy. Furthermore, our results suggest that the best approach is predicting hybrids including dominance deviation, mainly for complex traits. We also observed including copy number variation effects seems to be suitable, due to the increase of prediction accuracies and reduction of model bias. On the other hand, adding four different sets of population structure as fixed covariates to GBLUP did not improve the prediction accuracy for grain yield and plant height. However, using nonmetric multidimensional scaling dimensions and fineSTRUCTURE group clustering increased reliability of the GEBV for GY and PH, respectively.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11137/tde-22032018-131222/
url http://www.teses.usp.br/teses/disponiveis/11/11137/tde-22032018-131222/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257264419766272