Padrões e pseudo-aleatoriedade usando sistemas complexos

Detalhes bibliográficos
Autor(a) principal: Justo, Marina Jeaneth Machicao
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-28022018-144846/
Resumo: Neste trabalho demonstramos que padrões e aleatoriedade estão intimamente relacionados, ao contrário do que intuitivamente é considerado como campos opostos. Esta abordagem visa dois propósitos: por um lado, obter vantagens das propriedades caóticas para medir pseudo-aleatoriedade, e por outro lado, extrair padrões de diagramas espaço-tempo como método de reconhecimento de padrões. Este trabalho centrou-se em dois métodos relacionados com sistemas complexos, como sistemas dinâmicos de tempo discreto, redes complexas, autômatos celulares (AC) e suas combinações. O primeiro método foi explorar as propriedades das profundezas do caos como fonte de pseudo-aleatoriedade a partir de sistemas dinâmicos caóticos, como o mapa logístico e o mapa da tenda. Observamos que os padrões desaparecem e a pseudo-aleatoriedade é aumentada pela remoção de k dígitos à direita da vírgula dos pontos de uma órbita original de um mapa caótico. Portanto, foi encontrada uma fonte caótica interessante para obter geradores de números de pseudo-aleatórios (PRNGs) parametrizada por k. Um segundo método foi proposto com base na incorporação de autômatos celulares na topologia de rede, também chamada de rede-autômato, visando caracterizar as redes a partir da dinâmica espaço-temporal intrínseca dessas redes. Quatro problemas de grande demanda foram explorados, tais como (i) identificar redes sociais online; (ii) identificar organismos de diferentes domínios da vida através de suas redes metabólicas; (iii) classificar padrões de distribuição de estômatos variando de acordo com diferentes condições ambientais; e (iv) o problema de identificação de autoria. Finalmente, essa mesma abordagem foi utilizada para analisar as sequências de números pseudo-aleatórios gerados pelo padrão ouro do k-mapa logístico no contexto do reconhecimento de padrões. A abordagem proposta permitiu explorar padrões e pseudoaleatoriedade extraídos de uma miríade de sistemas com resultados bem-sucedidos em termos de acerto e boa pseudo-aleatoriedade. Além disso, este trabalho trouxe consigo progressos significativos em aplicações de reconhecimento de padrões do mundo real de um amplo ramo de campos como criptografia, criptoanálise, biologia e ciência dos dados.
id USP_efdb651093a8b2c3c21e2047788148ad
oai_identifier_str oai:teses.usp.br:tde-28022018-144846
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Padrões e pseudo-aleatoriedade usando sistemas complexosPatterns and pseudo-randomness using complex systemsAutômato celularCellular automataChaos theoryComplex systemsPadrõesPattern recognitionPatternsPseudo-aleatoriedadePseudo-randomnessReconhecimento de padrõesSistemas complexosTeoria do caosNeste trabalho demonstramos que padrões e aleatoriedade estão intimamente relacionados, ao contrário do que intuitivamente é considerado como campos opostos. Esta abordagem visa dois propósitos: por um lado, obter vantagens das propriedades caóticas para medir pseudo-aleatoriedade, e por outro lado, extrair padrões de diagramas espaço-tempo como método de reconhecimento de padrões. Este trabalho centrou-se em dois métodos relacionados com sistemas complexos, como sistemas dinâmicos de tempo discreto, redes complexas, autômatos celulares (AC) e suas combinações. O primeiro método foi explorar as propriedades das profundezas do caos como fonte de pseudo-aleatoriedade a partir de sistemas dinâmicos caóticos, como o mapa logístico e o mapa da tenda. Observamos que os padrões desaparecem e a pseudo-aleatoriedade é aumentada pela remoção de k dígitos à direita da vírgula dos pontos de uma órbita original de um mapa caótico. Portanto, foi encontrada uma fonte caótica interessante para obter geradores de números de pseudo-aleatórios (PRNGs) parametrizada por k. Um segundo método foi proposto com base na incorporação de autômatos celulares na topologia de rede, também chamada de rede-autômato, visando caracterizar as redes a partir da dinâmica espaço-temporal intrínseca dessas redes. Quatro problemas de grande demanda foram explorados, tais como (i) identificar redes sociais online; (ii) identificar organismos de diferentes domínios da vida através de suas redes metabólicas; (iii) classificar padrões de distribuição de estômatos variando de acordo com diferentes condições ambientais; e (iv) o problema de identificação de autoria. Finalmente, essa mesma abordagem foi utilizada para analisar as sequências de números pseudo-aleatórios gerados pelo padrão ouro do k-mapa logístico no contexto do reconhecimento de padrões. A abordagem proposta permitiu explorar padrões e pseudoaleatoriedade extraídos de uma miríade de sistemas com resultados bem-sucedidos em termos de acerto e boa pseudo-aleatoriedade. Além disso, este trabalho trouxe consigo progressos significativos em aplicações de reconhecimento de padrões do mundo real de um amplo ramo de campos como criptografia, criptoanálise, biologia e ciência dos dados.In this work, we demonstrate that patterns and randomness are close related, contrary to what intuitively is considered as opposite fields. We aimed for a pattern recognition approach that aims for two purposes: (i) to take advantages from the chaotic properties as a source of pseudo-randomness in order to measure pseudo-randomness and (ii) to extract patterns from spatio-temporal diagrams obtained from complex systems models as a pattern recognition method. This work has focused on different complex systems such as discrete dynamical systems, complex networks, cellular automata (CA), and their combinations. The first method was to explore the chaotic properties in a deep-zoom manner as a source of pseudo-randomness from chaotic dynamical systems such as the logistic map and the tent map. We observed that the patterns vanish and therefore pseudo-randomness is increased by removing k right digits from the original orbit sequences. Therefore, we found an interesting chaotic source to obtain pseudo-randomness number generators (PRNGs). A second method was proposed based on the embedding of cellular automata (CA) over a network topology, also called network automata, aiming to characterize networks from the intrinsic spatio-temporal dynamics of these networks. Various on-demand problems were explored such as (i) identifying online social networks; (ii) identifying organisms from distinct domains of life through their metabolic networks; (iii) classifying stomata distribution patterns varying according to different environmental conditions; and (iv) the authorship identification problem. Finally, this same approach was used to analyze the sequences of pseudo-random numbers generated by the gold standard k-logistic map in the context of pattern recognition. So far, the proposed pattern recognition approach based on non-linear systems allowed us to explored patterns and pseudo-randomness extracted from a myriad of systems with successful results in terms of accuracy and good pseudorandomness. The proposed method has made significant progress in real-world pattern recognition applications from a wide branch of fields such as Cryptography, Cryptanalysis, Biology and Data Science.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezJusto, Marina Jeaneth Machicao2017-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-28022018-144846/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-28022018-144846Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Padrões e pseudo-aleatoriedade usando sistemas complexos
Patterns and pseudo-randomness using complex systems
title Padrões e pseudo-aleatoriedade usando sistemas complexos
spellingShingle Padrões e pseudo-aleatoriedade usando sistemas complexos
Justo, Marina Jeaneth Machicao
Autômato celular
Cellular automata
Chaos theory
Complex systems
Padrões
Pattern recognition
Patterns
Pseudo-aleatoriedade
Pseudo-randomness
Reconhecimento de padrões
Sistemas complexos
Teoria do caos
title_short Padrões e pseudo-aleatoriedade usando sistemas complexos
title_full Padrões e pseudo-aleatoriedade usando sistemas complexos
title_fullStr Padrões e pseudo-aleatoriedade usando sistemas complexos
title_full_unstemmed Padrões e pseudo-aleatoriedade usando sistemas complexos
title_sort Padrões e pseudo-aleatoriedade usando sistemas complexos
author Justo, Marina Jeaneth Machicao
author_facet Justo, Marina Jeaneth Machicao
author_role author
dc.contributor.none.fl_str_mv Bruno, Odemir Martinez
dc.contributor.author.fl_str_mv Justo, Marina Jeaneth Machicao
dc.subject.por.fl_str_mv Autômato celular
Cellular automata
Chaos theory
Complex systems
Padrões
Pattern recognition
Patterns
Pseudo-aleatoriedade
Pseudo-randomness
Reconhecimento de padrões
Sistemas complexos
Teoria do caos
topic Autômato celular
Cellular automata
Chaos theory
Complex systems
Padrões
Pattern recognition
Patterns
Pseudo-aleatoriedade
Pseudo-randomness
Reconhecimento de padrões
Sistemas complexos
Teoria do caos
description Neste trabalho demonstramos que padrões e aleatoriedade estão intimamente relacionados, ao contrário do que intuitivamente é considerado como campos opostos. Esta abordagem visa dois propósitos: por um lado, obter vantagens das propriedades caóticas para medir pseudo-aleatoriedade, e por outro lado, extrair padrões de diagramas espaço-tempo como método de reconhecimento de padrões. Este trabalho centrou-se em dois métodos relacionados com sistemas complexos, como sistemas dinâmicos de tempo discreto, redes complexas, autômatos celulares (AC) e suas combinações. O primeiro método foi explorar as propriedades das profundezas do caos como fonte de pseudo-aleatoriedade a partir de sistemas dinâmicos caóticos, como o mapa logístico e o mapa da tenda. Observamos que os padrões desaparecem e a pseudo-aleatoriedade é aumentada pela remoção de k dígitos à direita da vírgula dos pontos de uma órbita original de um mapa caótico. Portanto, foi encontrada uma fonte caótica interessante para obter geradores de números de pseudo-aleatórios (PRNGs) parametrizada por k. Um segundo método foi proposto com base na incorporação de autômatos celulares na topologia de rede, também chamada de rede-autômato, visando caracterizar as redes a partir da dinâmica espaço-temporal intrínseca dessas redes. Quatro problemas de grande demanda foram explorados, tais como (i) identificar redes sociais online; (ii) identificar organismos de diferentes domínios da vida através de suas redes metabólicas; (iii) classificar padrões de distribuição de estômatos variando de acordo com diferentes condições ambientais; e (iv) o problema de identificação de autoria. Finalmente, essa mesma abordagem foi utilizada para analisar as sequências de números pseudo-aleatórios gerados pelo padrão ouro do k-mapa logístico no contexto do reconhecimento de padrões. A abordagem proposta permitiu explorar padrões e pseudoaleatoriedade extraídos de uma miríade de sistemas com resultados bem-sucedidos em termos de acerto e boa pseudo-aleatoriedade. Além disso, este trabalho trouxe consigo progressos significativos em aplicações de reconhecimento de padrões do mundo real de um amplo ramo de campos como criptografia, criptoanálise, biologia e ciência dos dados.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-28022018-144846/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-28022018-144846/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257426123816960