Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantations

Detalhes bibliográficos
Autor(a) principal: Martello, Maurício
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11152/tde-04012023-154932/
Resumo: Brazil is the largest coffee producer and exporter in the world. In recent years, the need to modernize agricultural production has grown, based on the spatial variability of soil and plant attributes, in order to increase crop efficiency and rural producer profitability. In this sense, different sensing techniques (orbital, aerial and proximal) have been tested to map the spatial variability of plant and soil characteristics in different production systems, allowing to obtain high frequency data quickly and at low cost. However, for the coffee culture, studies that approach these techniques together to generate information that subsidize improvements in the spatialized management of the coffee plantation are scarce. As it is a perennial crop, coffee production is the integrated result of the various factors involved in the management of the crop, soil, climate and the plant itself, such as the behavior of productive biennials, with years of high and low yields. The creation of a system that allows obtaining this information quickly and non-invasively is essential for an efficient management of the crop. In this sense, this study sought to evaluate the potential use of data obtained by different sensors, seeking to identify attributes and features of the variability present in coffee plantations that express a direct relationship with yield and, consequently, identify the biennial yield (temporal variability). To this end, the study was divided into five chapters that address these gaps from different perspectives. Initially, a brief review of the main works published in the area is presented, then, in the second chapter, we sought to evaluate the quality of the data obtained through a yield monitor embedded in a coffee harvester. The data obtained by the monitor, of the volume of coffee harvested, showed a high correlation with data obtained with the load cells, validating the method and allowing the mapping of three consecutive harvests, which made it possible to advance in the understanding of the spatial and temporal variability of coffee yield in commercial areas. Aiming to explore the potential of mapping production variability before harvest, chapters three, four and five used remote sensing techniques to predict and map the spatial variability of a commercial coffee crop, with different sensors and at three levels of data acquisition. In chapter three, active optical sensors (AOS) embedded in a tractor, at a proximal level, were explored. In the fourth chapter, the use of aerial images obtained by remotely piloted aircraft (RPA) was addressed and in the fifth chapter, high spatial resolution orbital images were used. In general, data from active optical sensors showed a high correlation with yield, as well as allowing the temporal monitoring of the spatial variability of the study area, identifying regions that present inversion of yield (biennial). The results presented with the use of aerial images obtained by RPA demonstrated the potential of images in the extraction of biophysical parameters from coffee trees. They also allowed the individualization of plants aiming at extracting height and volume data, allowing the observation of the space-time relationship of the variables studied with yield data during three consecutive seasons. High spatial resolution orbital images showed the potential to predict coffee yield with high assertiveness one year before harvest. In general, the results found in this work reinforce the importance of knowing the productive spatial variability in coffee areas, as this type of information helps in the search for possible causes of this variability so that the culture can be managed considering these spatial and temporal differences. This study presented the spatio-temporal variations of data from orbital, aerial and terrestrial sensors in a commercial coffee area, as well as their relationship with yield maps generated with high data density, allowing to estimate productivity and identify production variations caused by biennial.
id USP_f11cd908d1aa754759bf4c079c698004
oai_identifier_str oai:teses.usp.br:tde-04012023-154932
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantationsSensoriamento orbital, aéreo e proximal aplicado ao monitoramento da variabilidade espacial de lavouras de caféAgricultura de precisãoColheita mecanizadaGeoprocessamentoGeoprocessingMechanized harvestingPrecision agricultureRemote sensingSensoriamento remotoBrazil is the largest coffee producer and exporter in the world. In recent years, the need to modernize agricultural production has grown, based on the spatial variability of soil and plant attributes, in order to increase crop efficiency and rural producer profitability. In this sense, different sensing techniques (orbital, aerial and proximal) have been tested to map the spatial variability of plant and soil characteristics in different production systems, allowing to obtain high frequency data quickly and at low cost. However, for the coffee culture, studies that approach these techniques together to generate information that subsidize improvements in the spatialized management of the coffee plantation are scarce. As it is a perennial crop, coffee production is the integrated result of the various factors involved in the management of the crop, soil, climate and the plant itself, such as the behavior of productive biennials, with years of high and low yields. The creation of a system that allows obtaining this information quickly and non-invasively is essential for an efficient management of the crop. In this sense, this study sought to evaluate the potential use of data obtained by different sensors, seeking to identify attributes and features of the variability present in coffee plantations that express a direct relationship with yield and, consequently, identify the biennial yield (temporal variability). To this end, the study was divided into five chapters that address these gaps from different perspectives. Initially, a brief review of the main works published in the area is presented, then, in the second chapter, we sought to evaluate the quality of the data obtained through a yield monitor embedded in a coffee harvester. The data obtained by the monitor, of the volume of coffee harvested, showed a high correlation with data obtained with the load cells, validating the method and allowing the mapping of three consecutive harvests, which made it possible to advance in the understanding of the spatial and temporal variability of coffee yield in commercial areas. Aiming to explore the potential of mapping production variability before harvest, chapters three, four and five used remote sensing techniques to predict and map the spatial variability of a commercial coffee crop, with different sensors and at three levels of data acquisition. In chapter three, active optical sensors (AOS) embedded in a tractor, at a proximal level, were explored. In the fourth chapter, the use of aerial images obtained by remotely piloted aircraft (RPA) was addressed and in the fifth chapter, high spatial resolution orbital images were used. In general, data from active optical sensors showed a high correlation with yield, as well as allowing the temporal monitoring of the spatial variability of the study area, identifying regions that present inversion of yield (biennial). The results presented with the use of aerial images obtained by RPA demonstrated the potential of images in the extraction of biophysical parameters from coffee trees. They also allowed the individualization of plants aiming at extracting height and volume data, allowing the observation of the space-time relationship of the variables studied with yield data during three consecutive seasons. High spatial resolution orbital images showed the potential to predict coffee yield with high assertiveness one year before harvest. In general, the results found in this work reinforce the importance of knowing the productive spatial variability in coffee areas, as this type of information helps in the search for possible causes of this variability so that the culture can be managed considering these spatial and temporal differences. This study presented the spatio-temporal variations of data from orbital, aerial and terrestrial sensors in a commercial coffee area, as well as their relationship with yield maps generated with high data density, allowing to estimate productivity and identify production variations caused by biennial.O Brasil é o maior produtor e exportador de café do mundo. Nos últimos anos cresceu a necessidade de modernização da produção agrícola, baseando-se na variabilidade espacial dos atributos do solo e das plantas, visando aumentar eficiência da lavoura e rentabilidade do produtor rural. Neste sentido, diferentes técnicas de sensoriamento (orbital, aéreo e proximal) têm sido testadas para mapear a variabilidade espacial de características de plantas e solo em diferentes sistemas de produção, permitindo obter alta frequência de dados com rapidez e baixo custo. No entanto, para a cultura do café os estudos que abordam essas técnicas em conjunto para gerar informações que subsidiem melhorias na gestão espacializada da lavoura de café são escassos. Por ser uma cultura perene, a produção de café é o resultado integrado dos diversos fatores envolvidos no manejo da cultura, solo, clima e da própria planta, como por exemplo o comportamento de bienalidade produtiva, com anos de alta e baixa produção. A criação de um sistema que permita obter essa informação de forma rápida e não invasiva é fundamental para uma gestão eficiente da lavoura. Nesse sentindo, este estudo buscou avaliar o potencial de uso de dados obtidos por diferentes sensores, buscando identificar atributos e feições da variabilidade presente nas lavouras de café que expressem relação direta com produtividade e consequentemente identifiquem a bienalidade produtiva (variabilidade temporal). Para tanto, o estudo foi dividido em cinco capítulos que abordam essas lacunas a partir de diferentes perspectivas. Inicialmente apresenta-se uma revisão breve sobre os principais trabalhos publicados na área, em seguida, no segundo capítulo buscou-se avaliar a qualidade dos dados obtidos por meio de um monitor de produtividade embarcado em uma colhedora de café. Os dados obtidos pelo monitor, de volume de café colhido, apresentaram alta correlação com dados obtidos com as células de carga, validando o método e permitindo mapear três safras consecutivas, que possibilitaram avançar na compreensão da variabilidade espacial e temporal da produtividade cafeeira em áreas comerciais. Visando explorar a potencialidade de mapear a variabilidade produtiva antes da colheita, os capítulos três, quatro e cinco, utilizaram técnicas de sensoriamento remoto para predizer e mapear a variabilidade espacial de uma lavoura comercial de café, com diferentes sensores e em três níveis de aquisição dos dados. No capítulo três foram explorados os sensores ópticos ativos (AOS) embarcados em um trator, em nível proximal. No quarto capítulo foi abordado o uso de imagens aéreas obtidas por aeronaves remotamente pilotadas (RPA) e no quinto capítulo foram utilizadas imagens orbitais de alta resolução espacial. De forma geral, os dados de sensores ópticos ativos apresentaram alta correlação com a produtividade, bem como permitiram monitorar temporalmente a variabilidade espacial da área de estudo, identificando regiões que apresentam inversão produtiva (bienalidade). Os resultados apresentados com o uso das imagens aéreas obtidas por RPA demonstraram o potencial das imagens na extração de parâmetros biofísicos dos cafeeiros. Também permitiram a individualização das plantas visando à extração de dados de altura e volume, permitindo observar a relação espaço-temporal das variáveis estudadas com dados de produtividade durante três safras consecutivas. As imagens orbitais de alta resolução espacial apresentaram a potencialidade em predizer a produtividade do café com alta assertividade um ano antes da colheita. De maneira geral os resultados encontrados nesse trabalho reforçam a importância em conhecer a variabilidade espacial produtiva nas áreas de café, pois esse tipo de informação auxilia na busca de possíveis causas dessa variabilidade para que a cultura possa ser manejada considerando essas diferenças espaciais e temporais. Este estudo apresentou as variações espaço-temporais dos dados de sensores orbitais, aéreos e terrestres em uma área comercial de café, bem como sua relação com mapas de produtividade gerados com alta densidade de dados, permitindo estimar a produtividade e identificar as variações produtivas ocasionadas pela bienalidade.Biblioteca Digitais de Teses e Dissertações da USPMolin, Jose PauloMartello, Maurício2022-10-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-04012023-154932/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-01-04T19:07:35Zoai:teses.usp.br:tde-04012023-154932Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-01-04T19:07:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantations
Sensoriamento orbital, aéreo e proximal aplicado ao monitoramento da variabilidade espacial de lavouras de café
title Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantations
spellingShingle Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantations
Martello, Maurício
Agricultura de precisão
Colheita mecanizada
Geoprocessamento
Geoprocessing
Mechanized harvesting
Precision agriculture
Remote sensing
Sensoriamento remoto
title_short Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantations
title_full Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantations
title_fullStr Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantations
title_full_unstemmed Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantations
title_sort Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee plantations
author Martello, Maurício
author_facet Martello, Maurício
author_role author
dc.contributor.none.fl_str_mv Molin, Jose Paulo
dc.contributor.author.fl_str_mv Martello, Maurício
dc.subject.por.fl_str_mv Agricultura de precisão
Colheita mecanizada
Geoprocessamento
Geoprocessing
Mechanized harvesting
Precision agriculture
Remote sensing
Sensoriamento remoto
topic Agricultura de precisão
Colheita mecanizada
Geoprocessamento
Geoprocessing
Mechanized harvesting
Precision agriculture
Remote sensing
Sensoriamento remoto
description Brazil is the largest coffee producer and exporter in the world. In recent years, the need to modernize agricultural production has grown, based on the spatial variability of soil and plant attributes, in order to increase crop efficiency and rural producer profitability. In this sense, different sensing techniques (orbital, aerial and proximal) have been tested to map the spatial variability of plant and soil characteristics in different production systems, allowing to obtain high frequency data quickly and at low cost. However, for the coffee culture, studies that approach these techniques together to generate information that subsidize improvements in the spatialized management of the coffee plantation are scarce. As it is a perennial crop, coffee production is the integrated result of the various factors involved in the management of the crop, soil, climate and the plant itself, such as the behavior of productive biennials, with years of high and low yields. The creation of a system that allows obtaining this information quickly and non-invasively is essential for an efficient management of the crop. In this sense, this study sought to evaluate the potential use of data obtained by different sensors, seeking to identify attributes and features of the variability present in coffee plantations that express a direct relationship with yield and, consequently, identify the biennial yield (temporal variability). To this end, the study was divided into five chapters that address these gaps from different perspectives. Initially, a brief review of the main works published in the area is presented, then, in the second chapter, we sought to evaluate the quality of the data obtained through a yield monitor embedded in a coffee harvester. The data obtained by the monitor, of the volume of coffee harvested, showed a high correlation with data obtained with the load cells, validating the method and allowing the mapping of three consecutive harvests, which made it possible to advance in the understanding of the spatial and temporal variability of coffee yield in commercial areas. Aiming to explore the potential of mapping production variability before harvest, chapters three, four and five used remote sensing techniques to predict and map the spatial variability of a commercial coffee crop, with different sensors and at three levels of data acquisition. In chapter three, active optical sensors (AOS) embedded in a tractor, at a proximal level, were explored. In the fourth chapter, the use of aerial images obtained by remotely piloted aircraft (RPA) was addressed and in the fifth chapter, high spatial resolution orbital images were used. In general, data from active optical sensors showed a high correlation with yield, as well as allowing the temporal monitoring of the spatial variability of the study area, identifying regions that present inversion of yield (biennial). The results presented with the use of aerial images obtained by RPA demonstrated the potential of images in the extraction of biophysical parameters from coffee trees. They also allowed the individualization of plants aiming at extracting height and volume data, allowing the observation of the space-time relationship of the variables studied with yield data during three consecutive seasons. High spatial resolution orbital images showed the potential to predict coffee yield with high assertiveness one year before harvest. In general, the results found in this work reinforce the importance of knowing the productive spatial variability in coffee areas, as this type of information helps in the search for possible causes of this variability so that the culture can be managed considering these spatial and temporal differences. This study presented the spatio-temporal variations of data from orbital, aerial and terrestrial sensors in a commercial coffee area, as well as their relationship with yield maps generated with high data density, allowing to estimate productivity and identify production variations caused by biennial.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11152/tde-04012023-154932/
url https://www.teses.usp.br/teses/disponiveis/11/11152/tde-04012023-154932/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256710741229568