Coherence contributions to the entropy production in quantum processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/43/43134/tde-30092021-121643/ |
Resumo: | The thermodynamics of quantum processes is a recent field of study and it has been growing in recent years. Previously thought of as an emergent phenomenon for macroscopic systems, thermodynamics started being applied to quantum systems considering quantities such as heat and work as stochastics. The peculiarity of these systems is that, in addition to studying energetic resources, we must also take into account quantum informational resources such as entanglement and coherence. In this scenario, entropy becomes an important quantity, because in addition to being related to the irreversibility of a process, it can also be used as a measure of the amount of information in the system to which we have access. Entropy, unlike energy, is not a conserved quantity; that is, in a closed system, there is not only an entropy flow between it\'s parts, but also, in general, entropy production. According to the principle of Landauer [IBM Journal of Research and Development, vol. 5, no. 3, pp. 183191 (1961)], it is the entropy produced that causes the loss of information. Studying, then, the production of entropy becomes important for areas such as quantum computing, where you want to have control over information gains and losses. In quantum processes, entropy is produced due both to changes in the energy of the system and to fluctuations in coherence [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], a purely quantum resource. In this project, we propose to study the statistics of entropy production due to coherence. For this, we will investigate two different splittings of the entropy production: the one proposed in [Phys. Rev. E, vol. 99, 042105 (2019); npj Quantum Information 5, 23 (2019)] and a most recent one proposed in [Phys. Rev. Research 2, 023377 (2020); New Journal of Physics 23, 063027 (2021)]. For simplicity, we will analyse a unitary quantum process, using the two-point measurement (TPM) scheme [Phys. Rev. E 75, 050102 (2007)]. We will apply both formalisms for two specific quantum systems: a macrospin model and the Lipkin-Meshkov-Glick (LMG) model [Nuclear Physics, vol. 62, no. 2, pp. 188 224 (1965)]. We will analyse, in these cases, how the distribution of coherence depends on parameters such as system dimension, temperature, evolution in time, etc. |
id |
USP_f1d8a789677319d8da4f7415b940d62d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-30092021-121643 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Coherence contributions to the entropy production in quantum processesContribuições da coerência para a produção de entropia em processos quânticosCoerênciaCoherenceEntropy productionInformação quânticaNon-equilibrium processes.Processos de não-equilíbrio.Produção de entropiaQuantum informationQuantum thermodynamicsTermodinâmica quânticaThe thermodynamics of quantum processes is a recent field of study and it has been growing in recent years. Previously thought of as an emergent phenomenon for macroscopic systems, thermodynamics started being applied to quantum systems considering quantities such as heat and work as stochastics. The peculiarity of these systems is that, in addition to studying energetic resources, we must also take into account quantum informational resources such as entanglement and coherence. In this scenario, entropy becomes an important quantity, because in addition to being related to the irreversibility of a process, it can also be used as a measure of the amount of information in the system to which we have access. Entropy, unlike energy, is not a conserved quantity; that is, in a closed system, there is not only an entropy flow between it\'s parts, but also, in general, entropy production. According to the principle of Landauer [IBM Journal of Research and Development, vol. 5, no. 3, pp. 183191 (1961)], it is the entropy produced that causes the loss of information. Studying, then, the production of entropy becomes important for areas such as quantum computing, where you want to have control over information gains and losses. In quantum processes, entropy is produced due both to changes in the energy of the system and to fluctuations in coherence [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], a purely quantum resource. In this project, we propose to study the statistics of entropy production due to coherence. For this, we will investigate two different splittings of the entropy production: the one proposed in [Phys. Rev. E, vol. 99, 042105 (2019); npj Quantum Information 5, 23 (2019)] and a most recent one proposed in [Phys. Rev. Research 2, 023377 (2020); New Journal of Physics 23, 063027 (2021)]. For simplicity, we will analyse a unitary quantum process, using the two-point measurement (TPM) scheme [Phys. Rev. E 75, 050102 (2007)]. We will apply both formalisms for two specific quantum systems: a macrospin model and the Lipkin-Meshkov-Glick (LMG) model [Nuclear Physics, vol. 62, no. 2, pp. 188 224 (1965)]. We will analyse, in these cases, how the distribution of coherence depends on parameters such as system dimension, temperature, evolution in time, etc.A termodinâmica de processos quânticos é um campo de estudo recente e que tem crescido nos últimos anos. Anteriormente pensada como um fenômeno emergente para sistemas macroscópicos, a termodinâmica pôde ser aplicada a sistemas quânticos considerando quantidades como calor e trabalho como estocásticas. A particularidade desses sistemas é que, além de estudar recursos energéticos, devemos levar em consideração também recursos informacionais quânticos como emaranhamento e coerência. Nesse cenário, a entropia se torna uma quantidade importante, pois além de estar relacionada à irreversibilidade de um processo, ela também pode ser usada como medida da quantidade de informação do sistema a que temos acesso. A entropia, diferentemente da energia, não é uma quantidade conservada; isso é, em um sistema fechado, não há somente fluxo de entropia entre partes deste como há também, em geral, produção de entropia. De acordo com o princípio de Landauer [IBM Journal of Research and Development, vol. 5, no. 3, pp. 183191 (1961)], é a entropia produzida que tem como contrapartida a perda de informação. Estudar, então, a produção de entropia torna-se importante para áreas como computação quântica, onde se deseja ter controle sobre ganhos e perdas de informação. Em processos quânticos, a produção se dá tanto devido a mudanças na energia do sistema quanto a flutuações na coerência [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], um recurso puramente quântico. Neste projeto, propomos estudar a estatística da produção de entropia devido à coerência. Para isso, investigaremos duas divisões diferentes da produção de entropia: a proposta em [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], e a outra apresentada em [Phys. Rev. Research 2, 023377 (2020); New Journal of Physics 23, 063027 (2021)]. Por simplicidade, analisaremos um processo quântico unitário, usando o esquema de medição em dois pontos [two-point measurement (TPM) scheme] [Phys. Rev. E 75, 050102 (2007)]. Aplicaremos ambos os formalismos para dois sistemas quânticos específicos: um modelo de macrospin e o modelo Lipkin-Meshkov-Glick (LMG) [Nuclear Physics, vol. 62, no. 2, pp. 188 224 (1965)]. Analisaremos, nesses casos, como a distribuição da coerência depende de parâmetros como dimensão do sistema, temperatura, tempo de evolução, etcBiblioteca Digitais de Teses e Dissertações da USPLandi, Gabriel TeixeiraCipolla, Mariana Afeche2021-09-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-30092021-121643/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-09-30T20:42:02Zoai:teses.usp.br:tde-30092021-121643Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-30T20:42:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Coherence contributions to the entropy production in quantum processes Contribuições da coerência para a produção de entropia em processos quânticos |
title |
Coherence contributions to the entropy production in quantum processes |
spellingShingle |
Coherence contributions to the entropy production in quantum processes Cipolla, Mariana Afeche Coerência Coherence Entropy production Informação quântica Non-equilibrium processes. Processos de não-equilíbrio. Produção de entropia Quantum information Quantum thermodynamics Termodinâmica quântica |
title_short |
Coherence contributions to the entropy production in quantum processes |
title_full |
Coherence contributions to the entropy production in quantum processes |
title_fullStr |
Coherence contributions to the entropy production in quantum processes |
title_full_unstemmed |
Coherence contributions to the entropy production in quantum processes |
title_sort |
Coherence contributions to the entropy production in quantum processes |
author |
Cipolla, Mariana Afeche |
author_facet |
Cipolla, Mariana Afeche |
author_role |
author |
dc.contributor.none.fl_str_mv |
Landi, Gabriel Teixeira |
dc.contributor.author.fl_str_mv |
Cipolla, Mariana Afeche |
dc.subject.por.fl_str_mv |
Coerência Coherence Entropy production Informação quântica Non-equilibrium processes. Processos de não-equilíbrio. Produção de entropia Quantum information Quantum thermodynamics Termodinâmica quântica |
topic |
Coerência Coherence Entropy production Informação quântica Non-equilibrium processes. Processos de não-equilíbrio. Produção de entropia Quantum information Quantum thermodynamics Termodinâmica quântica |
description |
The thermodynamics of quantum processes is a recent field of study and it has been growing in recent years. Previously thought of as an emergent phenomenon for macroscopic systems, thermodynamics started being applied to quantum systems considering quantities such as heat and work as stochastics. The peculiarity of these systems is that, in addition to studying energetic resources, we must also take into account quantum informational resources such as entanglement and coherence. In this scenario, entropy becomes an important quantity, because in addition to being related to the irreversibility of a process, it can also be used as a measure of the amount of information in the system to which we have access. Entropy, unlike energy, is not a conserved quantity; that is, in a closed system, there is not only an entropy flow between it\'s parts, but also, in general, entropy production. According to the principle of Landauer [IBM Journal of Research and Development, vol. 5, no. 3, pp. 183191 (1961)], it is the entropy produced that causes the loss of information. Studying, then, the production of entropy becomes important for areas such as quantum computing, where you want to have control over information gains and losses. In quantum processes, entropy is produced due both to changes in the energy of the system and to fluctuations in coherence [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], a purely quantum resource. In this project, we propose to study the statistics of entropy production due to coherence. For this, we will investigate two different splittings of the entropy production: the one proposed in [Phys. Rev. E, vol. 99, 042105 (2019); npj Quantum Information 5, 23 (2019)] and a most recent one proposed in [Phys. Rev. Research 2, 023377 (2020); New Journal of Physics 23, 063027 (2021)]. For simplicity, we will analyse a unitary quantum process, using the two-point measurement (TPM) scheme [Phys. Rev. E 75, 050102 (2007)]. We will apply both formalisms for two specific quantum systems: a macrospin model and the Lipkin-Meshkov-Glick (LMG) model [Nuclear Physics, vol. 62, no. 2, pp. 188 224 (1965)]. We will analyse, in these cases, how the distribution of coherence depends on parameters such as system dimension, temperature, evolution in time, etc. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-30092021-121643/ |
url |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-30092021-121643/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257470284595200 |