Coherence contributions to the entropy production in quantum processes

Detalhes bibliográficos
Autor(a) principal: Cipolla, Mariana Afeche
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-30092021-121643/
Resumo: The thermodynamics of quantum processes is a recent field of study and it has been growing in recent years. Previously thought of as an emergent phenomenon for macroscopic systems, thermodynamics started being applied to quantum systems considering quantities such as heat and work as stochastics. The peculiarity of these systems is that, in addition to studying energetic resources, we must also take into account quantum informational resources such as entanglement and coherence. In this scenario, entropy becomes an important quantity, because in addition to being related to the irreversibility of a process, it can also be used as a measure of the amount of information in the system to which we have access. Entropy, unlike energy, is not a conserved quantity; that is, in a closed system, there is not only an entropy flow between it\'s parts, but also, in general, entropy production. According to the principle of Landauer [IBM Journal of Research and Development, vol. 5, no. 3, pp. 183191 (1961)], it is the entropy produced that causes the loss of information. Studying, then, the production of entropy becomes important for areas such as quantum computing, where you want to have control over information gains and losses. In quantum processes, entropy is produced due both to changes in the energy of the system and to fluctuations in coherence [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], a purely quantum resource. In this project, we propose to study the statistics of entropy production due to coherence. For this, we will investigate two different splittings of the entropy production: the one proposed in [Phys. Rev. E, vol. 99, 042105 (2019); npj Quantum Information 5, 23 (2019)] and a most recent one proposed in [Phys. Rev. Research 2, 023377 (2020); New Journal of Physics 23, 063027 (2021)]. For simplicity, we will analyse a unitary quantum process, using the two-point measurement (TPM) scheme [Phys. Rev. E 75, 050102 (2007)]. We will apply both formalisms for two specific quantum systems: a macrospin model and the Lipkin-Meshkov-Glick (LMG) model [Nuclear Physics, vol. 62, no. 2, pp. 188 224 (1965)]. We will analyse, in these cases, how the distribution of coherence depends on parameters such as system dimension, temperature, evolution in time, etc.
id USP_f1d8a789677319d8da4f7415b940d62d
oai_identifier_str oai:teses.usp.br:tde-30092021-121643
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Coherence contributions to the entropy production in quantum processesContribuições da coerência para a produção de entropia em processos quânticosCoerênciaCoherenceEntropy productionInformação quânticaNon-equilibrium processes.Processos de não-equilíbrio.Produção de entropiaQuantum informationQuantum thermodynamicsTermodinâmica quânticaThe thermodynamics of quantum processes is a recent field of study and it has been growing in recent years. Previously thought of as an emergent phenomenon for macroscopic systems, thermodynamics started being applied to quantum systems considering quantities such as heat and work as stochastics. The peculiarity of these systems is that, in addition to studying energetic resources, we must also take into account quantum informational resources such as entanglement and coherence. In this scenario, entropy becomes an important quantity, because in addition to being related to the irreversibility of a process, it can also be used as a measure of the amount of information in the system to which we have access. Entropy, unlike energy, is not a conserved quantity; that is, in a closed system, there is not only an entropy flow between it\'s parts, but also, in general, entropy production. According to the principle of Landauer [IBM Journal of Research and Development, vol. 5, no. 3, pp. 183191 (1961)], it is the entropy produced that causes the loss of information. Studying, then, the production of entropy becomes important for areas such as quantum computing, where you want to have control over information gains and losses. In quantum processes, entropy is produced due both to changes in the energy of the system and to fluctuations in coherence [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], a purely quantum resource. In this project, we propose to study the statistics of entropy production due to coherence. For this, we will investigate two different splittings of the entropy production: the one proposed in [Phys. Rev. E, vol. 99, 042105 (2019); npj Quantum Information 5, 23 (2019)] and a most recent one proposed in [Phys. Rev. Research 2, 023377 (2020); New Journal of Physics 23, 063027 (2021)]. For simplicity, we will analyse a unitary quantum process, using the two-point measurement (TPM) scheme [Phys. Rev. E 75, 050102 (2007)]. We will apply both formalisms for two specific quantum systems: a macrospin model and the Lipkin-Meshkov-Glick (LMG) model [Nuclear Physics, vol. 62, no. 2, pp. 188 224 (1965)]. We will analyse, in these cases, how the distribution of coherence depends on parameters such as system dimension, temperature, evolution in time, etc.A termodinâmica de processos quânticos é um campo de estudo recente e que tem crescido nos últimos anos. Anteriormente pensada como um fenômeno emergente para sistemas macroscópicos, a termodinâmica pôde ser aplicada a sistemas quânticos considerando quantidades como calor e trabalho como estocásticas. A particularidade desses sistemas é que, além de estudar recursos energéticos, devemos levar em consideração também recursos informacionais quânticos como emaranhamento e coerência. Nesse cenário, a entropia se torna uma quantidade importante, pois além de estar relacionada à irreversibilidade de um processo, ela também pode ser usada como medida da quantidade de informação do sistema a que temos acesso. A entropia, diferentemente da energia, não é uma quantidade conservada; isso é, em um sistema fechado, não há somente fluxo de entropia entre partes deste como há também, em geral, produção de entropia. De acordo com o princípio de Landauer [IBM Journal of Research and Development, vol. 5, no. 3, pp. 183191 (1961)], é a entropia produzida que tem como contrapartida a perda de informação. Estudar, então, a produção de entropia torna-se importante para áreas como computação quântica, onde se deseja ter controle sobre ganhos e perdas de informação. Em processos quânticos, a produção se dá tanto devido a mudanças na energia do sistema quanto a flutuações na coerência [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], um recurso puramente quântico. Neste projeto, propomos estudar a estatística da produção de entropia devido à coerência. Para isso, investigaremos duas divisões diferentes da produção de entropia: a proposta em [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], e a outra apresentada em [Phys. Rev. Research 2, 023377 (2020); New Journal of Physics 23, 063027 (2021)]. Por simplicidade, analisaremos um processo quântico unitário, usando o esquema de medição em dois pontos [two-point measurement (TPM) scheme] [Phys. Rev. E 75, 050102 (2007)]. Aplicaremos ambos os formalismos para dois sistemas quânticos específicos: um modelo de macrospin e o modelo Lipkin-Meshkov-Glick (LMG) [Nuclear Physics, vol. 62, no. 2, pp. 188 224 (1965)]. Analisaremos, nesses casos, como a distribuição da coerência depende de parâmetros como dimensão do sistema, temperatura, tempo de evolução, etcBiblioteca Digitais de Teses e Dissertações da USPLandi, Gabriel TeixeiraCipolla, Mariana Afeche2021-09-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-30092021-121643/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-09-30T20:42:02Zoai:teses.usp.br:tde-30092021-121643Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-30T20:42:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Coherence contributions to the entropy production in quantum processes
Contribuições da coerência para a produção de entropia em processos quânticos
title Coherence contributions to the entropy production in quantum processes
spellingShingle Coherence contributions to the entropy production in quantum processes
Cipolla, Mariana Afeche
Coerência
Coherence
Entropy production
Informação quântica
Non-equilibrium processes.
Processos de não-equilíbrio.
Produção de entropia
Quantum information
Quantum thermodynamics
Termodinâmica quântica
title_short Coherence contributions to the entropy production in quantum processes
title_full Coherence contributions to the entropy production in quantum processes
title_fullStr Coherence contributions to the entropy production in quantum processes
title_full_unstemmed Coherence contributions to the entropy production in quantum processes
title_sort Coherence contributions to the entropy production in quantum processes
author Cipolla, Mariana Afeche
author_facet Cipolla, Mariana Afeche
author_role author
dc.contributor.none.fl_str_mv Landi, Gabriel Teixeira
dc.contributor.author.fl_str_mv Cipolla, Mariana Afeche
dc.subject.por.fl_str_mv Coerência
Coherence
Entropy production
Informação quântica
Non-equilibrium processes.
Processos de não-equilíbrio.
Produção de entropia
Quantum information
Quantum thermodynamics
Termodinâmica quântica
topic Coerência
Coherence
Entropy production
Informação quântica
Non-equilibrium processes.
Processos de não-equilíbrio.
Produção de entropia
Quantum information
Quantum thermodynamics
Termodinâmica quântica
description The thermodynamics of quantum processes is a recent field of study and it has been growing in recent years. Previously thought of as an emergent phenomenon for macroscopic systems, thermodynamics started being applied to quantum systems considering quantities such as heat and work as stochastics. The peculiarity of these systems is that, in addition to studying energetic resources, we must also take into account quantum informational resources such as entanglement and coherence. In this scenario, entropy becomes an important quantity, because in addition to being related to the irreversibility of a process, it can also be used as a measure of the amount of information in the system to which we have access. Entropy, unlike energy, is not a conserved quantity; that is, in a closed system, there is not only an entropy flow between it\'s parts, but also, in general, entropy production. According to the principle of Landauer [IBM Journal of Research and Development, vol. 5, no. 3, pp. 183191 (1961)], it is the entropy produced that causes the loss of information. Studying, then, the production of entropy becomes important for areas such as quantum computing, where you want to have control over information gains and losses. In quantum processes, entropy is produced due both to changes in the energy of the system and to fluctuations in coherence [Phys. Rev. E 99, 042105 (2019); npj Quantum Information 5, 23 (2019)], a purely quantum resource. In this project, we propose to study the statistics of entropy production due to coherence. For this, we will investigate two different splittings of the entropy production: the one proposed in [Phys. Rev. E, vol. 99, 042105 (2019); npj Quantum Information 5, 23 (2019)] and a most recent one proposed in [Phys. Rev. Research 2, 023377 (2020); New Journal of Physics 23, 063027 (2021)]. For simplicity, we will analyse a unitary quantum process, using the two-point measurement (TPM) scheme [Phys. Rev. E 75, 050102 (2007)]. We will apply both formalisms for two specific quantum systems: a macrospin model and the Lipkin-Meshkov-Glick (LMG) model [Nuclear Physics, vol. 62, no. 2, pp. 188 224 (1965)]. We will analyse, in these cases, how the distribution of coherence depends on parameters such as system dimension, temperature, evolution in time, etc.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/43/43134/tde-30092021-121643/
url https://www.teses.usp.br/teses/disponiveis/43/43134/tde-30092021-121643/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257470284595200