Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-03092009-135403/ |
Resumo: | Atualmente, o meio mais comum de busca de informações é a WEB. Assim, é importante procurar métodos eficientes para recuperar essa informação. As máquinas de busca na WEB usualmente utilizam palavras-chaves para expressar uma busca. Porém, não é trivial caracterizar a informação desejada. Usuários diferentes com necessidades diferentes podem estar interessados em informações relacionadas, mas distintas, ao realizar a mesma busca. O processo de realimentação de relevância torna possível a participação ativa do usuário no processo de busca. A idéia geral desse processo consiste em, após o usuário realizar uma busca na WEB permitir que indique, dentre os sites encontrados, quais deles considera relevantes e não relevantes. A opinião do usuário pode então ser considerada para reordenar os dados, de forma que os sites relevantes para o usuário sejam retornados mais facilmente. Nesse contexto, e considerando que, na grande maioria dos casos, uma consulta retorna um número muito grande de sites WEB que a satisfazem, das quais o usuário é responsável por indicar um pequeno número de sites relevantes e não relevantes, tem-se o cenário ideal para utilizar aprendizado parcialmente supervisionado, pois essa classe de algoritmos de aprendizado requer um número pequeno de exemplos rotulados e um grande número de exemplos não-rotulados. Assim, partindo da hipótese que a utilização de aprendizado parcialmente supervisionado é apropriada para induzir um classificador que pode ser utilizado como um filtro de realimentação de relevância para buscas na WEB, o objetivo deste trabalho consiste em explorar algoritmos de aprendizado parcialmente supervisionado, mais especificamente, aqueles que utilizam multidescrição de dados, para auxiliar na recuperação de sites na WEB. Para avaliar esta hipótese foi projetada e desenvolvida uma ferramenta denominada C-SEARCH que realiza esta reordenação dos sites a partir da indicação do usuário. Experimentos mostram que, em casos que buscas genéricas, que o resultado possui um bom diferencial entre sites relevantes e irrelevantes, o sistema consegue obter melhores resultados para o usuário |
id |
USP_f229ada8c3bb286df756ea416308594f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03092009-135403 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEBPartially supervised multi-view machine learning for relevance feedback in WEB information retrievalAprendizado de máquinaInformation retrievalMachine learningMineração de textosMulti-viewMultidescriçãoRecuperação de informaçãoText miningAtualmente, o meio mais comum de busca de informações é a WEB. Assim, é importante procurar métodos eficientes para recuperar essa informação. As máquinas de busca na WEB usualmente utilizam palavras-chaves para expressar uma busca. Porém, não é trivial caracterizar a informação desejada. Usuários diferentes com necessidades diferentes podem estar interessados em informações relacionadas, mas distintas, ao realizar a mesma busca. O processo de realimentação de relevância torna possível a participação ativa do usuário no processo de busca. A idéia geral desse processo consiste em, após o usuário realizar uma busca na WEB permitir que indique, dentre os sites encontrados, quais deles considera relevantes e não relevantes. A opinião do usuário pode então ser considerada para reordenar os dados, de forma que os sites relevantes para o usuário sejam retornados mais facilmente. Nesse contexto, e considerando que, na grande maioria dos casos, uma consulta retorna um número muito grande de sites WEB que a satisfazem, das quais o usuário é responsável por indicar um pequeno número de sites relevantes e não relevantes, tem-se o cenário ideal para utilizar aprendizado parcialmente supervisionado, pois essa classe de algoritmos de aprendizado requer um número pequeno de exemplos rotulados e um grande número de exemplos não-rotulados. Assim, partindo da hipótese que a utilização de aprendizado parcialmente supervisionado é apropriada para induzir um classificador que pode ser utilizado como um filtro de realimentação de relevância para buscas na WEB, o objetivo deste trabalho consiste em explorar algoritmos de aprendizado parcialmente supervisionado, mais especificamente, aqueles que utilizam multidescrição de dados, para auxiliar na recuperação de sites na WEB. Para avaliar esta hipótese foi projetada e desenvolvida uma ferramenta denominada C-SEARCH que realiza esta reordenação dos sites a partir da indicação do usuário. Experimentos mostram que, em casos que buscas genéricas, que o resultado possui um bom diferencial entre sites relevantes e irrelevantes, o sistema consegue obter melhores resultados para o usuárioAs nowadays the WEB is the most common source of information, it is very important to find reliable and efficient methods to retrieve this information. However, the WEB is a highly volatile and heterogeneous information source, thus keyword based querying may not be the best approach when few information is given. This is due to the fact that different users with different needs may want distinct information, although related to the same keyword query. The process of relevance feedback makes it possible for the user to interact actively with the search engine. The main idea is that after performing an initial search in the WEB, the process enables the user to indicate, among the retrieved sites, a small number of the ones considered relevant or irrelevant according with his/her required information. The users preferences can then be used to rearrange sites returned in the initial search, so that relevant sites are ranked first. As in most cases a search returns a large amount of WEB sites which fits the keyword query, this is an ideal situation to use partially supervised machine learning algorithms. This kind of learning algorithms require a small number of labeled examples, and a large number of unlabeled examples. Thus, based on the assumption that the use of partially supervised learning is appropriate to induce a classifier that can be used as a filter for relevance feedback in WEB information retrieval, the aim of this work is to explore the use of a partially supervised machine learning algorithm, more specifically, one that uses multi-description data, in order to assist the WEB search. To this end, a computational tool called C-SEARCH, which performs the reordering of the searched results using the users feedback, has been implemented. Experimental results show that in cases where the keyword query is generic and there is a clear distinction between relevant and irrelevant sites, which is recognized by the user, the system can achieve good resultsBiblioteca Digitais de Teses e Dissertações da USPMonard, Maria CarolinaSoares, Matheus Victor Brum2009-05-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-03092009-135403/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:00Zoai:teses.usp.br:tde-03092009-135403Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB Partially supervised multi-view machine learning for relevance feedback in WEB information retrieval |
title |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB |
spellingShingle |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB Soares, Matheus Victor Brum Aprendizado de máquina Information retrieval Machine learning Mineração de textos Multi-view Multidescrição Recuperação de informação Text mining |
title_short |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB |
title_full |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB |
title_fullStr |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB |
title_full_unstemmed |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB |
title_sort |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB |
author |
Soares, Matheus Victor Brum |
author_facet |
Soares, Matheus Victor Brum |
author_role |
author |
dc.contributor.none.fl_str_mv |
Monard, Maria Carolina |
dc.contributor.author.fl_str_mv |
Soares, Matheus Victor Brum |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Information retrieval Machine learning Mineração de textos Multi-view Multidescrição Recuperação de informação Text mining |
topic |
Aprendizado de máquina Information retrieval Machine learning Mineração de textos Multi-view Multidescrição Recuperação de informação Text mining |
description |
Atualmente, o meio mais comum de busca de informações é a WEB. Assim, é importante procurar métodos eficientes para recuperar essa informação. As máquinas de busca na WEB usualmente utilizam palavras-chaves para expressar uma busca. Porém, não é trivial caracterizar a informação desejada. Usuários diferentes com necessidades diferentes podem estar interessados em informações relacionadas, mas distintas, ao realizar a mesma busca. O processo de realimentação de relevância torna possível a participação ativa do usuário no processo de busca. A idéia geral desse processo consiste em, após o usuário realizar uma busca na WEB permitir que indique, dentre os sites encontrados, quais deles considera relevantes e não relevantes. A opinião do usuário pode então ser considerada para reordenar os dados, de forma que os sites relevantes para o usuário sejam retornados mais facilmente. Nesse contexto, e considerando que, na grande maioria dos casos, uma consulta retorna um número muito grande de sites WEB que a satisfazem, das quais o usuário é responsável por indicar um pequeno número de sites relevantes e não relevantes, tem-se o cenário ideal para utilizar aprendizado parcialmente supervisionado, pois essa classe de algoritmos de aprendizado requer um número pequeno de exemplos rotulados e um grande número de exemplos não-rotulados. Assim, partindo da hipótese que a utilização de aprendizado parcialmente supervisionado é apropriada para induzir um classificador que pode ser utilizado como um filtro de realimentação de relevância para buscas na WEB, o objetivo deste trabalho consiste em explorar algoritmos de aprendizado parcialmente supervisionado, mais especificamente, aqueles que utilizam multidescrição de dados, para auxiliar na recuperação de sites na WEB. Para avaliar esta hipótese foi projetada e desenvolvida uma ferramenta denominada C-SEARCH que realiza esta reordenação dos sites a partir da indicação do usuário. Experimentos mostram que, em casos que buscas genéricas, que o resultado possui um bom diferencial entre sites relevantes e irrelevantes, o sistema consegue obter melhores resultados para o usuário |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-05-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-03092009-135403/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-03092009-135403/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256645170626560 |