Seleção de variáveis em regressão 'L IND.1'
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020648/ |
Resumo: | O método mais utilizado no ajuste de modelos de regressão múltipla é o de mínimos quadrados, devido a suas propriedades estatísticas serem amplamente estudadas e facilidades computacionais. Contudo, este método é sensível a valores aberrantes, que são muito freqüentes no caso da distribuição dos erros possuir caudas pesadas. O objetivo desta dissertação é apresentar o método de estimação 'L IND.1', que é resistente a valores aberrantes na variável resposta. Será explorado, em particular, o problema de seleção de variáveis, sendo apresentados e desenvolvidos os critérios quando são analisadas as possíveis regressões, e procedimento automáticos de seleção. Um estudo preliminar sobre os efeitos da multicolinearidade nas estimativas 'L IND.1' é também executado. São apresentados também, programas que tornam viável a utilização do método 'L IND.1' em problemas de regressão |
id |
USP_f263722eeeea71b18301bc88ce86bb13 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-020648 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Seleção de variáveis em regressão 'L IND.1'not availableAnálise De Regressão E De CorrelaçãoO método mais utilizado no ajuste de modelos de regressão múltipla é o de mínimos quadrados, devido a suas propriedades estatísticas serem amplamente estudadas e facilidades computacionais. Contudo, este método é sensível a valores aberrantes, que são muito freqüentes no caso da distribuição dos erros possuir caudas pesadas. O objetivo desta dissertação é apresentar o método de estimação 'L IND.1', que é resistente a valores aberrantes na variável resposta. Será explorado, em particular, o problema de seleção de variáveis, sendo apresentados e desenvolvidos os critérios quando são analisadas as possíveis regressões, e procedimento automáticos de seleção. Um estudo preliminar sobre os efeitos da multicolinearidade nas estimativas 'L IND.1' é também executado. São apresentados também, programas que tornam viável a utilização do método 'L IND.1' em problemas de regressãoA widely used method to fit a multiple regresssion model is the least squares method, due to its statistical properties and computacional facilities. However, this approach can be affected by outliers, wich are very frequent when the errors distribution has heavy tails. The aim of this dissertation is to presente the 'L IND.1' method for regression models, exploring the variables selection problem. Criterions for variables selection are presented and developed when all possible regressions are considered and automatic selection procedures. A preliminary study about the multicolinearity effects over 'L IND.1'estinates is also perfomed. Programs which make possible the use of the 'L IND.1'method in regression problems are presentedBiblioteca Digitais de Teses e Dissertações da USPAndré, Carmen Diva Saldiva deTavares, Rodrigo Andrade1998-08-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020648/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T11:37:02Zoai:teses.usp.br:tde-20210729-020648Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T11:37:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Seleção de variáveis em regressão 'L IND.1' not available |
title |
Seleção de variáveis em regressão 'L IND.1' |
spellingShingle |
Seleção de variáveis em regressão 'L IND.1' Tavares, Rodrigo Andrade Análise De Regressão E De Correlação |
title_short |
Seleção de variáveis em regressão 'L IND.1' |
title_full |
Seleção de variáveis em regressão 'L IND.1' |
title_fullStr |
Seleção de variáveis em regressão 'L IND.1' |
title_full_unstemmed |
Seleção de variáveis em regressão 'L IND.1' |
title_sort |
Seleção de variáveis em regressão 'L IND.1' |
author |
Tavares, Rodrigo Andrade |
author_facet |
Tavares, Rodrigo Andrade |
author_role |
author |
dc.contributor.none.fl_str_mv |
André, Carmen Diva Saldiva de |
dc.contributor.author.fl_str_mv |
Tavares, Rodrigo Andrade |
dc.subject.por.fl_str_mv |
Análise De Regressão E De Correlação |
topic |
Análise De Regressão E De Correlação |
description |
O método mais utilizado no ajuste de modelos de regressão múltipla é o de mínimos quadrados, devido a suas propriedades estatísticas serem amplamente estudadas e facilidades computacionais. Contudo, este método é sensível a valores aberrantes, que são muito freqüentes no caso da distribuição dos erros possuir caudas pesadas. O objetivo desta dissertação é apresentar o método de estimação 'L IND.1', que é resistente a valores aberrantes na variável resposta. Será explorado, em particular, o problema de seleção de variáveis, sendo apresentados e desenvolvidos os critérios quando são analisadas as possíveis regressões, e procedimento automáticos de seleção. Um estudo preliminar sobre os efeitos da multicolinearidade nas estimativas 'L IND.1' é também executado. São apresentados também, programas que tornam viável a utilização do método 'L IND.1' em problemas de regressão |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-08-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020648/ |
url |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020648/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257207688658944 |