Inferência em redes aleatórias com pesos discretos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-28082023-162752/ |
Resumo: | As redes aleatórias têm sido amplamente utilizadas para descrever interações entre objetos, incluindo as relações interpessoais entre indivíduos. Uma das características mais importantes das redes é a presença de comunidades, que são grupos de nós com padrões de conexão semelhantes. Neste sentido, propomos um modelo em que as arestas entre pares de vértices são atribuídas de maneira aleatória, dadas as comunidades desses vértices, seguindo a distribuição de Poisson inflada de zeros (ZIP). Essa proposta nos permite modelar redes com estrutura de comunidades que sejam esparsas e que apresentem pesos nas arestas. A estimação dos parâmetros da distribuição ZIP é realizada por meio do algoritmo EM, enquanto a estimação das comunidades é feita usando o algoritmo EM-Variacional. O desempenho dos estimadores é avaliado por meio de estudos de simulação, utilizando a medida de comparação Informação Mútua Nomalizada (NMI), para comparar as comunidades verdadeiras e a estimadas pelo método. Para comparar os parâmetros estimados da distribuição ZIP, utilizamos o Erro Quadrático Médio (EQM). Por fim, aplicamos o modelo proposto em redes aeroportuárias do Brasil e detectamos a estrutura de comunidades nos anos de 2018 a 2021, a fim de avaliar as mudanças ocorridas nessas redes antes e durante o período de pandemia do COVID-19. |
id |
USP_f4d2bf02ce562f8ea4cd59520e638be0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-28082023-162752 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Inferência em redes aleatórias com pesos discretosInference in random networks with discrete weightsCommunity detectionDetecção de comunidadesDistribuição de Poisson inflada de zerosEM-VariacionalModelo estocástico em blocosRandom networkRedes aleatóriasStochastic block modelVariational EMZero-inflated Poisson DistributionAs redes aleatórias têm sido amplamente utilizadas para descrever interações entre objetos, incluindo as relações interpessoais entre indivíduos. Uma das características mais importantes das redes é a presença de comunidades, que são grupos de nós com padrões de conexão semelhantes. Neste sentido, propomos um modelo em que as arestas entre pares de vértices são atribuídas de maneira aleatória, dadas as comunidades desses vértices, seguindo a distribuição de Poisson inflada de zeros (ZIP). Essa proposta nos permite modelar redes com estrutura de comunidades que sejam esparsas e que apresentem pesos nas arestas. A estimação dos parâmetros da distribuição ZIP é realizada por meio do algoritmo EM, enquanto a estimação das comunidades é feita usando o algoritmo EM-Variacional. O desempenho dos estimadores é avaliado por meio de estudos de simulação, utilizando a medida de comparação Informação Mútua Nomalizada (NMI), para comparar as comunidades verdadeiras e a estimadas pelo método. Para comparar os parâmetros estimados da distribuição ZIP, utilizamos o Erro Quadrático Médio (EQM). Por fim, aplicamos o modelo proposto em redes aeroportuárias do Brasil e detectamos a estrutura de comunidades nos anos de 2018 a 2021, a fim de avaliar as mudanças ocorridas nessas redes antes e durante o período de pandemia do COVID-19.Random networks have been widely used to describe interactions between objects, including interpersonal relationships between individuals. One of the most important features of networks is the presence of communities, which are groups of nodes with similar patterns of connection. In this regard, we propose a model in which edges between pairs of vertices are randomly assigned, given the communities of those vertices, following the zero-inflated Poisson (ZIP) distribution. This proposal allows us to model networks with community structure that are sparse and have edge weights. The estimation of the parameters of the ZIP distribution is performed using the EM algorithm, while the estimation of communities is done using the EM-Variational algorithm. The performance of the estimators is evaluated through simulation studies, using the Normalized Mutual Information (NMI) comparison measure to compare the true and estimated communities. To compare the estimated parameters of the ZIP distribution, we use the Mean Squared Error (MSE). Finally, we apply the proposed model to airport networks in Brazil and detect the community structure from 2018 to 2021, in order to evaluate the changes that occurred in these networks before and during the COVID-19 pandemic period.Biblioteca Digitais de Teses e Dissertações da USPCerqueira, AndressaCosta, Laila Letícia da Silva2023-04-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-28082023-162752/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-08-28T19:51:02Zoai:teses.usp.br:tde-28082023-162752Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-28T19:51:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Inferência em redes aleatórias com pesos discretos Inference in random networks with discrete weights |
title |
Inferência em redes aleatórias com pesos discretos |
spellingShingle |
Inferência em redes aleatórias com pesos discretos Costa, Laila Letícia da Silva Community detection Detecção de comunidades Distribuição de Poisson inflada de zeros EM-Variacional Modelo estocástico em blocos Random network Redes aleatórias Stochastic block model Variational EM Zero-inflated Poisson Distribution |
title_short |
Inferência em redes aleatórias com pesos discretos |
title_full |
Inferência em redes aleatórias com pesos discretos |
title_fullStr |
Inferência em redes aleatórias com pesos discretos |
title_full_unstemmed |
Inferência em redes aleatórias com pesos discretos |
title_sort |
Inferência em redes aleatórias com pesos discretos |
author |
Costa, Laila Letícia da Silva |
author_facet |
Costa, Laila Letícia da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cerqueira, Andressa |
dc.contributor.author.fl_str_mv |
Costa, Laila Letícia da Silva |
dc.subject.por.fl_str_mv |
Community detection Detecção de comunidades Distribuição de Poisson inflada de zeros EM-Variacional Modelo estocástico em blocos Random network Redes aleatórias Stochastic block model Variational EM Zero-inflated Poisson Distribution |
topic |
Community detection Detecção de comunidades Distribuição de Poisson inflada de zeros EM-Variacional Modelo estocástico em blocos Random network Redes aleatórias Stochastic block model Variational EM Zero-inflated Poisson Distribution |
description |
As redes aleatórias têm sido amplamente utilizadas para descrever interações entre objetos, incluindo as relações interpessoais entre indivíduos. Uma das características mais importantes das redes é a presença de comunidades, que são grupos de nós com padrões de conexão semelhantes. Neste sentido, propomos um modelo em que as arestas entre pares de vértices são atribuídas de maneira aleatória, dadas as comunidades desses vértices, seguindo a distribuição de Poisson inflada de zeros (ZIP). Essa proposta nos permite modelar redes com estrutura de comunidades que sejam esparsas e que apresentem pesos nas arestas. A estimação dos parâmetros da distribuição ZIP é realizada por meio do algoritmo EM, enquanto a estimação das comunidades é feita usando o algoritmo EM-Variacional. O desempenho dos estimadores é avaliado por meio de estudos de simulação, utilizando a medida de comparação Informação Mútua Nomalizada (NMI), para comparar as comunidades verdadeiras e a estimadas pelo método. Para comparar os parâmetros estimados da distribuição ZIP, utilizamos o Erro Quadrático Médio (EQM). Por fim, aplicamos o modelo proposto em redes aeroportuárias do Brasil e detectamos a estrutura de comunidades nos anos de 2018 a 2021, a fim de avaliar as mudanças ocorridas nessas redes antes e durante o período de pandemia do COVID-19. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-28082023-162752/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-28082023-162752/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809091157091680256 |