Exploring the intersections between Information Visualization and Machine Learning

Detalhes bibliográficos
Autor(a) principal: Corrêa, Igor Bueno
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02012019-110149/
Resumo: With todays flood of data coming from many types of sources, Machine Learning becomes increasingly important. Though, many times the use of Machine Learning is not enough to make sense of all this data. This makes visualization a very useful tool for Machine Learning practitioners and data analysts alike. Interactive visualization techniques can be very helpful by giving insight on the meaning of the output from classification tasks. In this work, the aim is to explore, implement and evaluate different visualization techniques with the explicit goal of directly relating these visualization to the Machine Learning process. The proposed approach is the development of visualization techniques for a posteriori analysis that combines data exploration and classification evaluation. Results include a modified version of the Radial Visualization technique, called Dual RadViz, and also the use of interactive multiclass Partial Dependence Plots as means of finding counterfactual explanations about Machine Learning classification. An account of some of the many ways Machine Learning and visualization are used together is also given.
id USP_f7052c860dee96ef7f94b48aabc3ea3d
oai_identifier_str oai:teses.usp.br:tde-02012019-110149
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Exploring the intersections between Information Visualization and Machine LearningExplorando as interseções entre Visualização da Informação e Aprendizado de MáquinaAprendizado de máquinaInformation visualizationMachine learningRadVizRadVizVisual analyticsVisual analyticsVisualização da informaçãoWith todays flood of data coming from many types of sources, Machine Learning becomes increasingly important. Though, many times the use of Machine Learning is not enough to make sense of all this data. This makes visualization a very useful tool for Machine Learning practitioners and data analysts alike. Interactive visualization techniques can be very helpful by giving insight on the meaning of the output from classification tasks. In this work, the aim is to explore, implement and evaluate different visualization techniques with the explicit goal of directly relating these visualization to the Machine Learning process. The proposed approach is the development of visualization techniques for a posteriori analysis that combines data exploration and classification evaluation. Results include a modified version of the Radial Visualization technique, called Dual RadViz, and also the use of interactive multiclass Partial Dependence Plots as means of finding counterfactual explanations about Machine Learning classification. An account of some of the many ways Machine Learning and visualization are used together is also given.Hoje em dia, com o enorme fluxo de dados provenientes de muitos tipos de fontes, Aprendizado de Máquina se torna cada vez mais importante. No entanto, muitas vezes o uso de Aprendizado de Máquina não é o suficiente para que seja possível enxergar o valor e o significado de todos estes dados. Isso faz com que visualização seja uma valiosa ferramenta tanto para analistas de dados quanto para aqueles que praticam tarefas relacionadas à Aprendizado de Máquina. Técnicas de visualização interativa podem ser de grande utilidade por possibilitarem insights sobre o significado do resultado de tarefas de classificação. Neste trabalho, o objetivo é explorar, implementar e avaliar diferentes técnicas de visualização, explicitamente focando em suas relações com o processo de Aprendizado de Máquina. A abordagem proposta se trata do desenvolvimento de técnicas de visualização para análise a posteriori dos resultados de tarefas de classificação, combinando avaliação da classificação e exploração visual de dados. Os resultados incluem uma versão modificada da técnica de Visualização Radial, chamada Dual RadViz, e também o uso de Gráficos de Dependência Parcial multiclasse interativos como meio de se chegar à explicações contrafatuais sobre resultados de classificação. É dado também um relato de algumas das muitas maneiras onde Aprendizado de Máquina e visualização são usados conjuntamente.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deCorrêa, Igor Bueno2018-10-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-02012019-110149/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-04-09T23:21:59Zoai:teses.usp.br:tde-02012019-110149Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Exploring the intersections between Information Visualization and Machine Learning
Explorando as interseções entre Visualização da Informação e Aprendizado de Máquina
title Exploring the intersections between Information Visualization and Machine Learning
spellingShingle Exploring the intersections between Information Visualization and Machine Learning
Corrêa, Igor Bueno
Aprendizado de máquina
Information visualization
Machine learning
RadViz
RadViz
Visual analytics
Visual analytics
Visualização da informação
title_short Exploring the intersections between Information Visualization and Machine Learning
title_full Exploring the intersections between Information Visualization and Machine Learning
title_fullStr Exploring the intersections between Information Visualization and Machine Learning
title_full_unstemmed Exploring the intersections between Information Visualization and Machine Learning
title_sort Exploring the intersections between Information Visualization and Machine Learning
author Corrêa, Igor Bueno
author_facet Corrêa, Igor Bueno
author_role author
dc.contributor.none.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor.author.fl_str_mv Corrêa, Igor Bueno
dc.subject.por.fl_str_mv Aprendizado de máquina
Information visualization
Machine learning
RadViz
RadViz
Visual analytics
Visual analytics
Visualização da informação
topic Aprendizado de máquina
Information visualization
Machine learning
RadViz
RadViz
Visual analytics
Visual analytics
Visualização da informação
description With todays flood of data coming from many types of sources, Machine Learning becomes increasingly important. Though, many times the use of Machine Learning is not enough to make sense of all this data. This makes visualization a very useful tool for Machine Learning practitioners and data analysts alike. Interactive visualization techniques can be very helpful by giving insight on the meaning of the output from classification tasks. In this work, the aim is to explore, implement and evaluate different visualization techniques with the explicit goal of directly relating these visualization to the Machine Learning process. The proposed approach is the development of visualization techniques for a posteriori analysis that combines data exploration and classification evaluation. Results include a modified version of the Radial Visualization technique, called Dual RadViz, and also the use of interactive multiclass Partial Dependence Plots as means of finding counterfactual explanations about Machine Learning classification. An account of some of the many ways Machine Learning and visualization are used together is also given.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02012019-110149/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02012019-110149/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256596769406976