Seecology: Data Visualization Framework for Soundscape Ecology Applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-155103/ |
Resumo: | The field of Soundscape Ecology refers to the study of sounds produced in natural environments and how they can provide important information about the state of the environment, as well as on the potential impacts caused by changes due to external influences. The analysis and visualization of large amounts of ecological recordings, as well as the development of appropriate tools for audio analysis contitute a major challenge. Mechanisms for extracting audio features, as well as the characterization of acoustic events of interest, resulting in datasets that capture the frequency variations and the occurrence of acoustic events in the recordings, still constitute a problem due to available solutions do not prove adequate for data analysis in acoustic ecology research, involving domain-specific issues and voluminous amounts of audio records collected over long periods of time. This work aims to address problems related to the extraction of audio features, providing assistance through visualization to the selection of the most significants, that could represent the subtle variations in ecological recordings, as well as assisting specialists in the generation of annotated dtasets by the characterization of acoustic events through exploratory visualizations, and methods for detecting vessels in underwater recordings. A framework named Seecology is presented, encompassing suitable methods and tools to supporting specialists and scholars of environmental analysis. Case studies were carried out with the framework in terrestrial and underwater recordings provided by acoustic ecology researchers, by producing datasets from the custom feature extractor included in the framework, and in the case of the method developed for detecting boats in underwater recordings, a comparative study to another method was conducted to determine its accuracy, in addition to the case study to determine its effectiveness. The presented methods for extracting characteristics, characterizing acoustic events through exploratory visualization and boat detection, demonstrated their effectiveness for applications in acoustic ecology, with the framework containing the methods capable of producing multidimensional datasets without excessive computational costs, allowing the user to easily generate annotations on this data through the included visualizations. The boat detection method performed better than the one it was compared, both in speed and accuracy, being able to detect weak signals from boats even under extreme noise. |
id |
USP_3cb54bb7a81a39c762a433baf770fccf |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10092020-155103 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Seecology: Data Visualization Framework for Soundscape Ecology ApplicationsSeecology: Um Framework de Visualização de Dados para Aplicações em Ecologia AcústicaAcoustic ecologyAnálise de áudioAudio analysisBoat detectionDetecção de barcosEcologia acústicaExtração de característicasFeature extractionFrameworkFrameworkRadvizRadvizSoundscapeSoundscapeVisualizaçãoVisualizationThe field of Soundscape Ecology refers to the study of sounds produced in natural environments and how they can provide important information about the state of the environment, as well as on the potential impacts caused by changes due to external influences. The analysis and visualization of large amounts of ecological recordings, as well as the development of appropriate tools for audio analysis contitute a major challenge. Mechanisms for extracting audio features, as well as the characterization of acoustic events of interest, resulting in datasets that capture the frequency variations and the occurrence of acoustic events in the recordings, still constitute a problem due to available solutions do not prove adequate for data analysis in acoustic ecology research, involving domain-specific issues and voluminous amounts of audio records collected over long periods of time. This work aims to address problems related to the extraction of audio features, providing assistance through visualization to the selection of the most significants, that could represent the subtle variations in ecological recordings, as well as assisting specialists in the generation of annotated dtasets by the characterization of acoustic events through exploratory visualizations, and methods for detecting vessels in underwater recordings. A framework named Seecology is presented, encompassing suitable methods and tools to supporting specialists and scholars of environmental analysis. Case studies were carried out with the framework in terrestrial and underwater recordings provided by acoustic ecology researchers, by producing datasets from the custom feature extractor included in the framework, and in the case of the method developed for detecting boats in underwater recordings, a comparative study to another method was conducted to determine its accuracy, in addition to the case study to determine its effectiveness. The presented methods for extracting characteristics, characterizing acoustic events through exploratory visualization and boat detection, demonstrated their effectiveness for applications in acoustic ecology, with the framework containing the methods capable of producing multidimensional datasets without excessive computational costs, allowing the user to easily generate annotations on this data through the included visualizations. The boat detection method performed better than the one it was compared, both in speed and accuracy, being able to detect weak signals from boats even under extreme noise.A área de Ecologia de Paisagens Sonoras (Soundscape Ecology) refere-se ao estudo de sons produzidos em ambientes naturais e como eles podem fornecer informações importantes sobre o meio ambiente, bem como possíveis impactos causados por alterações devido a influências externas. A análise e visualização de grandes quantidades de gravações ecológicas, juntamente com a produção de recursos para análises constituem um grande desafio. Meios para a extração de características dos áudios, bem como a caracterização de eventos acústicos de interesse, produzindo conjuntos de dados que representem as variações de frequências e eventos acústicos capturados nas gravações, ainda consituem um problema devido às soluções disponíveis não se mostrarem adequadas para análises de dados em pesquisas de ecologia acústica, envolvendo questões específicas do domínio e quantidades volumosas de registros de áudio coletados por longos períodos de tempo. Faz-se necessário o desenvolvimento de métodos e ferramental para extrair e representar a grande quantidade dos dados produzidos a partir de estudos de ecologia. Este trabalho tem por objetivo abordar problemas relacionados à extração de características dos áudios, auxiliando na seleção das mais significativas que representem as sutis variações nas gravações ecológicas, bem como auxiliar especialistas na geração de conjuntos de dados anotados pela caracterização de eventos acústicos por meio de visualizações exploratórias, e métodos para um problema específico, que é a detecção de embarcações em gravações subaquáticas. Um arcabouço nomeado Seecology é apresentado, englobando métodos e ferramentas adequados para dar suporte aos especialistas e estudiosos de análise ambiental. Estudos de caso foram realizados com o arcabouço em gravações terrestres e subaquáticas fornecidos por pesquisadores da área, produzindo conjuntos de dados a partir do extrator de características personalizado incluso no arcabouço. No caso do método desenvolvido para detecção de barcos em gravações subaquáticas, um estudo comparativo a outro método foi conduzido para determinar sua acurácia, além do estudo de caso para determinar sua eficácia. Os métodos propostos para extração de características, caracterização de eventos acústicos por meio de visualização exploratória e detecção de barcos, demonstraram sua eficácia para aplicações em ecologia acústica, sendo o arcabouço capaz de produzir conjuntos de dados multidimensionais sem custos computacionais excessivos. Dessa forma o usuário é capaz de gerar anotações nestes dados facilmente por meio das visualizações inclusas. O método de detecção de barcos obteve desempenho superior ao que foi comparado, tanto em velocidade quanto em acurácia, sendo capaz de detectar sinais fracos de barcos mesmo sob ruído extremo.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Maria Cristina Ferreira deReis, Clausius Duque Gonçalves2020-05-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-155103/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-09-10T21:58:02Zoai:teses.usp.br:tde-10092020-155103Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-09-10T21:58:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Seecology: Data Visualization Framework for Soundscape Ecology Applications Seecology: Um Framework de Visualização de Dados para Aplicações em Ecologia Acústica |
title |
Seecology: Data Visualization Framework for Soundscape Ecology Applications |
spellingShingle |
Seecology: Data Visualization Framework for Soundscape Ecology Applications Reis, Clausius Duque Gonçalves Acoustic ecology Análise de áudio Audio analysis Boat detection Detecção de barcos Ecologia acústica Extração de características Feature extraction Framework Framework Radviz Radviz Soundscape Soundscape Visualização Visualization |
title_short |
Seecology: Data Visualization Framework for Soundscape Ecology Applications |
title_full |
Seecology: Data Visualization Framework for Soundscape Ecology Applications |
title_fullStr |
Seecology: Data Visualization Framework for Soundscape Ecology Applications |
title_full_unstemmed |
Seecology: Data Visualization Framework for Soundscape Ecology Applications |
title_sort |
Seecology: Data Visualization Framework for Soundscape Ecology Applications |
author |
Reis, Clausius Duque Gonçalves |
author_facet |
Reis, Clausius Duque Gonçalves |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oliveira, Maria Cristina Ferreira de |
dc.contributor.author.fl_str_mv |
Reis, Clausius Duque Gonçalves |
dc.subject.por.fl_str_mv |
Acoustic ecology Análise de áudio Audio analysis Boat detection Detecção de barcos Ecologia acústica Extração de características Feature extraction Framework Framework Radviz Radviz Soundscape Soundscape Visualização Visualization |
topic |
Acoustic ecology Análise de áudio Audio analysis Boat detection Detecção de barcos Ecologia acústica Extração de características Feature extraction Framework Framework Radviz Radviz Soundscape Soundscape Visualização Visualization |
description |
The field of Soundscape Ecology refers to the study of sounds produced in natural environments and how they can provide important information about the state of the environment, as well as on the potential impacts caused by changes due to external influences. The analysis and visualization of large amounts of ecological recordings, as well as the development of appropriate tools for audio analysis contitute a major challenge. Mechanisms for extracting audio features, as well as the characterization of acoustic events of interest, resulting in datasets that capture the frequency variations and the occurrence of acoustic events in the recordings, still constitute a problem due to available solutions do not prove adequate for data analysis in acoustic ecology research, involving domain-specific issues and voluminous amounts of audio records collected over long periods of time. This work aims to address problems related to the extraction of audio features, providing assistance through visualization to the selection of the most significants, that could represent the subtle variations in ecological recordings, as well as assisting specialists in the generation of annotated dtasets by the characterization of acoustic events through exploratory visualizations, and methods for detecting vessels in underwater recordings. A framework named Seecology is presented, encompassing suitable methods and tools to supporting specialists and scholars of environmental analysis. Case studies were carried out with the framework in terrestrial and underwater recordings provided by acoustic ecology researchers, by producing datasets from the custom feature extractor included in the framework, and in the case of the method developed for detecting boats in underwater recordings, a comparative study to another method was conducted to determine its accuracy, in addition to the case study to determine its effectiveness. The presented methods for extracting characteristics, characterizing acoustic events through exploratory visualization and boat detection, demonstrated their effectiveness for applications in acoustic ecology, with the framework containing the methods capable of producing multidimensional datasets without excessive computational costs, allowing the user to easily generate annotations on this data through the included visualizations. The boat detection method performed better than the one it was compared, both in speed and accuracy, being able to detect weak signals from boats even under extreme noise. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-155103/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-155103/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256921900318720 |