Seecology: Data Visualization Framework for Soundscape Ecology Applications

Detalhes bibliográficos
Autor(a) principal: Reis, Clausius Duque Gonçalves
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-155103/
Resumo: The field of Soundscape Ecology refers to the study of sounds produced in natural environments and how they can provide important information about the state of the environment, as well as on the potential impacts caused by changes due to external influences. The analysis and visualization of large amounts of ecological recordings, as well as the development of appropriate tools for audio analysis contitute a major challenge. Mechanisms for extracting audio features, as well as the characterization of acoustic events of interest, resulting in datasets that capture the frequency variations and the occurrence of acoustic events in the recordings, still constitute a problem due to available solutions do not prove adequate for data analysis in acoustic ecology research, involving domain-specific issues and voluminous amounts of audio records collected over long periods of time. This work aims to address problems related to the extraction of audio features, providing assistance through visualization to the selection of the most significants, that could represent the subtle variations in ecological recordings, as well as assisting specialists in the generation of annotated dtasets by the characterization of acoustic events through exploratory visualizations, and methods for detecting vessels in underwater recordings. A framework named Seecology is presented, encompassing suitable methods and tools to supporting specialists and scholars of environmental analysis. Case studies were carried out with the framework in terrestrial and underwater recordings provided by acoustic ecology researchers, by producing datasets from the custom feature extractor included in the framework, and in the case of the method developed for detecting boats in underwater recordings, a comparative study to another method was conducted to determine its accuracy, in addition to the case study to determine its effectiveness. The presented methods for extracting characteristics, characterizing acoustic events through exploratory visualization and boat detection, demonstrated their effectiveness for applications in acoustic ecology, with the framework containing the methods capable of producing multidimensional datasets without excessive computational costs, allowing the user to easily generate annotations on this data through the included visualizations. The boat detection method performed better than the one it was compared, both in speed and accuracy, being able to detect weak signals from boats even under extreme noise.
id USP_3cb54bb7a81a39c762a433baf770fccf
oai_identifier_str oai:teses.usp.br:tde-10092020-155103
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Seecology: Data Visualization Framework for Soundscape Ecology ApplicationsSeecology: Um Framework de Visualização de Dados para Aplicações em Ecologia AcústicaAcoustic ecologyAnálise de áudioAudio analysisBoat detectionDetecção de barcosEcologia acústicaExtração de característicasFeature extractionFrameworkFrameworkRadvizRadvizSoundscapeSoundscapeVisualizaçãoVisualizationThe field of Soundscape Ecology refers to the study of sounds produced in natural environments and how they can provide important information about the state of the environment, as well as on the potential impacts caused by changes due to external influences. The analysis and visualization of large amounts of ecological recordings, as well as the development of appropriate tools for audio analysis contitute a major challenge. Mechanisms for extracting audio features, as well as the characterization of acoustic events of interest, resulting in datasets that capture the frequency variations and the occurrence of acoustic events in the recordings, still constitute a problem due to available solutions do not prove adequate for data analysis in acoustic ecology research, involving domain-specific issues and voluminous amounts of audio records collected over long periods of time. This work aims to address problems related to the extraction of audio features, providing assistance through visualization to the selection of the most significants, that could represent the subtle variations in ecological recordings, as well as assisting specialists in the generation of annotated dtasets by the characterization of acoustic events through exploratory visualizations, and methods for detecting vessels in underwater recordings. A framework named Seecology is presented, encompassing suitable methods and tools to supporting specialists and scholars of environmental analysis. Case studies were carried out with the framework in terrestrial and underwater recordings provided by acoustic ecology researchers, by producing datasets from the custom feature extractor included in the framework, and in the case of the method developed for detecting boats in underwater recordings, a comparative study to another method was conducted to determine its accuracy, in addition to the case study to determine its effectiveness. The presented methods for extracting characteristics, characterizing acoustic events through exploratory visualization and boat detection, demonstrated their effectiveness for applications in acoustic ecology, with the framework containing the methods capable of producing multidimensional datasets without excessive computational costs, allowing the user to easily generate annotations on this data through the included visualizations. The boat detection method performed better than the one it was compared, both in speed and accuracy, being able to detect weak signals from boats even under extreme noise.A área de Ecologia de Paisagens Sonoras (Soundscape Ecology) refere-se ao estudo de sons produzidos em ambientes naturais e como eles podem fornecer informações importantes sobre o meio ambiente, bem como possíveis impactos causados por alterações devido a influências externas. A análise e visualização de grandes quantidades de gravações ecológicas, juntamente com a produção de recursos para análises constituem um grande desafio. Meios para a extração de características dos áudios, bem como a caracterização de eventos acústicos de interesse, produzindo conjuntos de dados que representem as variações de frequências e eventos acústicos capturados nas gravações, ainda consituem um problema devido às soluções disponíveis não se mostrarem adequadas para análises de dados em pesquisas de ecologia acústica, envolvendo questões específicas do domínio e quantidades volumosas de registros de áudio coletados por longos períodos de tempo. Faz-se necessário o desenvolvimento de métodos e ferramental para extrair e representar a grande quantidade dos dados produzidos a partir de estudos de ecologia. Este trabalho tem por objetivo abordar problemas relacionados à extração de características dos áudios, auxiliando na seleção das mais significativas que representem as sutis variações nas gravações ecológicas, bem como auxiliar especialistas na geração de conjuntos de dados anotados pela caracterização de eventos acústicos por meio de visualizações exploratórias, e métodos para um problema específico, que é a detecção de embarcações em gravações subaquáticas. Um arcabouço nomeado Seecology é apresentado, englobando métodos e ferramentas adequados para dar suporte aos especialistas e estudiosos de análise ambiental. Estudos de caso foram realizados com o arcabouço em gravações terrestres e subaquáticas fornecidos por pesquisadores da área, produzindo conjuntos de dados a partir do extrator de características personalizado incluso no arcabouço. No caso do método desenvolvido para detecção de barcos em gravações subaquáticas, um estudo comparativo a outro método foi conduzido para determinar sua acurácia, além do estudo de caso para determinar sua eficácia. Os métodos propostos para extração de características, caracterização de eventos acústicos por meio de visualização exploratória e detecção de barcos, demonstraram sua eficácia para aplicações em ecologia acústica, sendo o arcabouço capaz de produzir conjuntos de dados multidimensionais sem custos computacionais excessivos. Dessa forma o usuário é capaz de gerar anotações nestes dados facilmente por meio das visualizações inclusas. O método de detecção de barcos obteve desempenho superior ao que foi comparado, tanto em velocidade quanto em acurácia, sendo capaz de detectar sinais fracos de barcos mesmo sob ruído extremo.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Maria Cristina Ferreira deReis, Clausius Duque Gonçalves2020-05-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-155103/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-09-10T21:58:02Zoai:teses.usp.br:tde-10092020-155103Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-09-10T21:58:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Seecology: Data Visualization Framework for Soundscape Ecology Applications
Seecology: Um Framework de Visualização de Dados para Aplicações em Ecologia Acústica
title Seecology: Data Visualization Framework for Soundscape Ecology Applications
spellingShingle Seecology: Data Visualization Framework for Soundscape Ecology Applications
Reis, Clausius Duque Gonçalves
Acoustic ecology
Análise de áudio
Audio analysis
Boat detection
Detecção de barcos
Ecologia acústica
Extração de características
Feature extraction
Framework
Framework
Radviz
Radviz
Soundscape
Soundscape
Visualização
Visualization
title_short Seecology: Data Visualization Framework for Soundscape Ecology Applications
title_full Seecology: Data Visualization Framework for Soundscape Ecology Applications
title_fullStr Seecology: Data Visualization Framework for Soundscape Ecology Applications
title_full_unstemmed Seecology: Data Visualization Framework for Soundscape Ecology Applications
title_sort Seecology: Data Visualization Framework for Soundscape Ecology Applications
author Reis, Clausius Duque Gonçalves
author_facet Reis, Clausius Duque Gonçalves
author_role author
dc.contributor.none.fl_str_mv Oliveira, Maria Cristina Ferreira de
dc.contributor.author.fl_str_mv Reis, Clausius Duque Gonçalves
dc.subject.por.fl_str_mv Acoustic ecology
Análise de áudio
Audio analysis
Boat detection
Detecção de barcos
Ecologia acústica
Extração de características
Feature extraction
Framework
Framework
Radviz
Radviz
Soundscape
Soundscape
Visualização
Visualization
topic Acoustic ecology
Análise de áudio
Audio analysis
Boat detection
Detecção de barcos
Ecologia acústica
Extração de características
Feature extraction
Framework
Framework
Radviz
Radviz
Soundscape
Soundscape
Visualização
Visualization
description The field of Soundscape Ecology refers to the study of sounds produced in natural environments and how they can provide important information about the state of the environment, as well as on the potential impacts caused by changes due to external influences. The analysis and visualization of large amounts of ecological recordings, as well as the development of appropriate tools for audio analysis contitute a major challenge. Mechanisms for extracting audio features, as well as the characterization of acoustic events of interest, resulting in datasets that capture the frequency variations and the occurrence of acoustic events in the recordings, still constitute a problem due to available solutions do not prove adequate for data analysis in acoustic ecology research, involving domain-specific issues and voluminous amounts of audio records collected over long periods of time. This work aims to address problems related to the extraction of audio features, providing assistance through visualization to the selection of the most significants, that could represent the subtle variations in ecological recordings, as well as assisting specialists in the generation of annotated dtasets by the characterization of acoustic events through exploratory visualizations, and methods for detecting vessels in underwater recordings. A framework named Seecology is presented, encompassing suitable methods and tools to supporting specialists and scholars of environmental analysis. Case studies were carried out with the framework in terrestrial and underwater recordings provided by acoustic ecology researchers, by producing datasets from the custom feature extractor included in the framework, and in the case of the method developed for detecting boats in underwater recordings, a comparative study to another method was conducted to determine its accuracy, in addition to the case study to determine its effectiveness. The presented methods for extracting characteristics, characterizing acoustic events through exploratory visualization and boat detection, demonstrated their effectiveness for applications in acoustic ecology, with the framework containing the methods capable of producing multidimensional datasets without excessive computational costs, allowing the user to easily generate annotations on this data through the included visualizations. The boat detection method performed better than the one it was compared, both in speed and accuracy, being able to detect weak signals from boats even under extreme noise.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-155103/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-155103/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256921900318720