Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-130739/ |
Resumo: | Este trabalho se divide em duas partes distintas. Na primeira parte, para cada inteiro s '> OU =' 1 apresentamos uma nova família de curvas definidas sobre um corpo finito Fq-Frobenius não clássicas com relação ao sistema linear de curvas planas de grau s. Para o caso s = 2, apresentamos um critério necessário e suficiente para que certos tipos de curvas sejam Fq-Frobenius não clássicas com relação ao sistema linear de cônicas, obtendo assim exemplos de curvas diferentes das curvas de Fermat que atendem tal propriedade. Na segunda parte, dada uma curva X definida sobre um corpo finito Fq, através de um morfismo birracional definido sobre Fq de X em um espaço projetivo Pn, obtemos uma cota superior para o número de seus pontos Fqr -racionais , onde Fqr é uma extensão finita de Fq. Tal cota fornece uma melhora para as cotas de Stöhr-Voloch e Hasse-Weil em vários tipos de curvas, dentre elas, as curvas Frobenius não clássicas com relação ao morfismo em questão, que em geral, são curvas que tendem a possuir muitos pontos racionais. |
id |
USP_f7e2c180fc358b576211f1027d92925b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20220712-130739 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitosnot availableCurvas AlgébricasEste trabalho se divide em duas partes distintas. Na primeira parte, para cada inteiro s '> OU =' 1 apresentamos uma nova família de curvas definidas sobre um corpo finito Fq-Frobenius não clássicas com relação ao sistema linear de curvas planas de grau s. Para o caso s = 2, apresentamos um critério necessário e suficiente para que certos tipos de curvas sejam Fq-Frobenius não clássicas com relação ao sistema linear de cônicas, obtendo assim exemplos de curvas diferentes das curvas de Fermat que atendem tal propriedade. Na segunda parte, dada uma curva X definida sobre um corpo finito Fq, através de um morfismo birracional definido sobre Fq de X em um espaço projetivo Pn, obtemos uma cota superior para o número de seus pontos Fqr -racionais , onde Fqr é uma extensão finita de Fq. Tal cota fornece uma melhora para as cotas de Stöhr-Voloch e Hasse-Weil em vários tipos de curvas, dentre elas, as curvas Frobenius não clássicas com relação ao morfismo em questão, que em geral, são curvas que tendem a possuir muitos pontos racionais.not availableBiblioteca Digitais de Teses e Dissertações da USPBorges Filho, Herivelto MartinsArakelian, Nazar2013-05-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-130739/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-07-13T20:01:45Zoai:teses.usp.br:tde-20220712-130739Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-13T20:01:45Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitos not available |
title |
Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitos |
spellingShingle |
Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitos Arakelian, Nazar Curvas Algébricas |
title_short |
Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitos |
title_full |
Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitos |
title_fullStr |
Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitos |
title_full_unstemmed |
Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitos |
title_sort |
Curvas Frobenius não clássicas e cotas superiores para pontos racionais em curvas sobre corpos finitos |
author |
Arakelian, Nazar |
author_facet |
Arakelian, Nazar |
author_role |
author |
dc.contributor.none.fl_str_mv |
Borges Filho, Herivelto Martins |
dc.contributor.author.fl_str_mv |
Arakelian, Nazar |
dc.subject.por.fl_str_mv |
Curvas Algébricas |
topic |
Curvas Algébricas |
description |
Este trabalho se divide em duas partes distintas. Na primeira parte, para cada inteiro s '> OU =' 1 apresentamos uma nova família de curvas definidas sobre um corpo finito Fq-Frobenius não clássicas com relação ao sistema linear de curvas planas de grau s. Para o caso s = 2, apresentamos um critério necessário e suficiente para que certos tipos de curvas sejam Fq-Frobenius não clássicas com relação ao sistema linear de cônicas, obtendo assim exemplos de curvas diferentes das curvas de Fermat que atendem tal propriedade. Na segunda parte, dada uma curva X definida sobre um corpo finito Fq, através de um morfismo birracional definido sobre Fq de X em um espaço projetivo Pn, obtemos uma cota superior para o número de seus pontos Fqr -racionais , onde Fqr é uma extensão finita de Fq. Tal cota fornece uma melhora para as cotas de Stöhr-Voloch e Hasse-Weil em vários tipos de curvas, dentre elas, as curvas Frobenius não clássicas com relação ao morfismo em questão, que em geral, são curvas que tendem a possuir muitos pontos racionais. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-130739/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-130739/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257217491795968 |