Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-112732/ |
Resumo: | Neste trabalho é descrito uma seqüência de procedimentos para estimar parâmetros e selecionar ordem de modelos Auto-Regressivos com heterocedasticidade, ARCH(p), e Auto- Regressivos generalizados, GARCH(p,q). As estimativas são obtidas utilizando duas técnicas: a inferência clássica e a bayesiana em conjunto com simulação de Monte Carlo em Cadeia de Markov (MCMC). Na análise bayesiana utilizamos densidades a priori normais para os parâmetros do modelo. Os métodos desenvolvidos foram aplicados em duas séries geradas e em três séries do mercado financeiro: Índice Bovespa, Telebrás e Cotação em Dólar Americano da moeda Iene Japonês. Em geral, as estimativas de máxima verossimilhança e bayesiana apresentaram resultados próximos. Porém, em algumas séries, o intervalo com 95% de confiança para certos parâmetros do modelo apresentou valores negativos, o que viola as restrições impostas aos parâmetros dos modelos ARCH(p), destacando a vantagem da abordagem bayesiana. |
id |
USP_f823d4ecc719f4888773e8fd4399ff6d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24012018-112732 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCHNot availableNão disponívelNot availableNeste trabalho é descrito uma seqüência de procedimentos para estimar parâmetros e selecionar ordem de modelos Auto-Regressivos com heterocedasticidade, ARCH(p), e Auto- Regressivos generalizados, GARCH(p,q). As estimativas são obtidas utilizando duas técnicas: a inferência clássica e a bayesiana em conjunto com simulação de Monte Carlo em Cadeia de Markov (MCMC). Na análise bayesiana utilizamos densidades a priori normais para os parâmetros do modelo. Os métodos desenvolvidos foram aplicados em duas séries geradas e em três séries do mercado financeiro: Índice Bovespa, Telebrás e Cotação em Dólar Americano da moeda Iene Japonês. Em geral, as estimativas de máxima verossimilhança e bayesiana apresentaram resultados próximos. Porém, em algumas séries, o intervalo com 95% de confiança para certos parâmetros do modelo apresentou valores negativos, o que viola as restrições impostas aos parâmetros dos modelos ARCH(p), destacando a vantagem da abordagem bayesiana.In this work a sequence of procedures is described to estimate parameters, to select order and to forecast Autoregressive Conditional Heteroskedasticity ARCH(p) and generalized ARCH, GARCH(p,q), modeis. The estimates are obtained by using both classical inference techniques via maximum likelihood estimation and Bayesian inference approach jointly with simulation of Monte Cano Markov Chain (MCMC). In the Bayesian analysis we use normal prior densities for the parameters of the model. The applications for the developed methods were made in a generated series and iii three series of the Brazilian finance market: Index Bovespa, Telebrás and Quotation in American Doilar of the Japanese Yen. In general, the maximum likelihood and Bayesian estimates are similar. However, in some series, the 95% confidence intervais for some parameters of the model, presented negative values, violating the constraints imposed to the parameters of the ARCH(p) modeis, highlighting certain advantage of the Bayesian approach.Biblioteca Digitais de Teses e Dissertações da USPAndrade Filho, Marinho Gomes deFerreira, Valeria Aparecida Martins2001-05-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-112732/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-24012018-112732Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH Not available |
title |
Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH |
spellingShingle |
Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH Ferreira, Valeria Aparecida Martins Não disponível Not available |
title_short |
Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH |
title_full |
Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH |
title_fullStr |
Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH |
title_full_unstemmed |
Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH |
title_sort |
Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH |
author |
Ferreira, Valeria Aparecida Martins |
author_facet |
Ferreira, Valeria Aparecida Martins |
author_role |
author |
dc.contributor.none.fl_str_mv |
Andrade Filho, Marinho Gomes de |
dc.contributor.author.fl_str_mv |
Ferreira, Valeria Aparecida Martins |
dc.subject.por.fl_str_mv |
Não disponível Not available |
topic |
Não disponível Not available |
description |
Neste trabalho é descrito uma seqüência de procedimentos para estimar parâmetros e selecionar ordem de modelos Auto-Regressivos com heterocedasticidade, ARCH(p), e Auto- Regressivos generalizados, GARCH(p,q). As estimativas são obtidas utilizando duas técnicas: a inferência clássica e a bayesiana em conjunto com simulação de Monte Carlo em Cadeia de Markov (MCMC). Na análise bayesiana utilizamos densidades a priori normais para os parâmetros do modelo. Os métodos desenvolvidos foram aplicados em duas séries geradas e em três séries do mercado financeiro: Índice Bovespa, Telebrás e Cotação em Dólar Americano da moeda Iene Japonês. Em geral, as estimativas de máxima verossimilhança e bayesiana apresentaram resultados próximos. Porém, em algumas séries, o intervalo com 95% de confiança para certos parâmetros do modelo apresentou valores negativos, o que viola as restrições impostas aos parâmetros dos modelos ARCH(p), destacando a vantagem da abordagem bayesiana. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-05-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-112732/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-112732/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257381680971776 |