Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45132/tde-25032019-092801/ |
Resumo: | We use the theory of dual of Fréchet-Schwartz (DFS) spaces to establish a sufficient condition for top-degree solvability for the differential complex associated to a hypocomplex locally integrable structure. As an application, we show that the top-degree cohomology of left-invariant hypocomplex structures on a compact Lie group can be computed only by using left-invariant forms, thus reducing the computation to a purely algebraic one. In the case of left-invariant elliptic involutive structures on compact Lie groups, under certain reasonable conditions, we prove that the cohomology associated to the involutive structure can be computed only by using left-invariant forms. |
id |
USP_f856bcb516ecc9c9deb96c67fa404b3e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25032019-092801 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groupsResolubilidade em grau máximo para estruturas hipocomplexas e a cohomologia de estruturas involutivas invariantes à esquerda em grupos de Lie compactosCohomologiaCohomologia invariante à esquerdaCohomologyEstruturas involutivasGrupos de LieHipocomplexidadeHypocomplexInvolutive structuresLeft-invariant cohomologyLie groupsResolubilidadeSolvabilityWe use the theory of dual of Fréchet-Schwartz (DFS) spaces to establish a sufficient condition for top-degree solvability for the differential complex associated to a hypocomplex locally integrable structure. As an application, we show that the top-degree cohomology of left-invariant hypocomplex structures on a compact Lie group can be computed only by using left-invariant forms, thus reducing the computation to a purely algebraic one. In the case of left-invariant elliptic involutive structures on compact Lie groups, under certain reasonable conditions, we prove that the cohomology associated to the involutive structure can be computed only by using left-invariant forms.Usamos a teoria da espaços duais de Fréchet-Schwartz (DFS) para estabelecer uma condição suficiente para resolubilidade em grau máximo para o complexo associado a estrutuas localmente integráveis hipocomplexas. Como aplicação, provamos que a cohomologia de estruturas hipocomplexas invariantes à esquerda podem ser calculadas usando apenas formas invariantes à esquerda, assim reduzindo o cálculo a um método puramente algébrico. No caso de estruturas invariantes à esquerda, sob certas condições razoáveis, provamos que a cohomologia associada à estrutura pode ser calculada usando apenas formas invariantes à esquerda.Biblioteca Digitais de Teses e Dissertações da USPCordaro, Paulo DomingosJahnke, Max Reinhold2018-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-25032019-092801/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-04-10T00:06:19Zoai:teses.usp.br:tde-25032019-092801Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-10T00:06:19Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups Resolubilidade em grau máximo para estruturas hipocomplexas e a cohomologia de estruturas involutivas invariantes à esquerda em grupos de Lie compactos |
title |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups |
spellingShingle |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups Jahnke, Max Reinhold Cohomologia Cohomologia invariante à esquerda Cohomology Estruturas involutivas Grupos de Lie Hipocomplexidade Hypocomplex Involutive structures Left-invariant cohomology Lie groups Resolubilidade Solvability |
title_short |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups |
title_full |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups |
title_fullStr |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups |
title_full_unstemmed |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups |
title_sort |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups |
author |
Jahnke, Max Reinhold |
author_facet |
Jahnke, Max Reinhold |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cordaro, Paulo Domingos |
dc.contributor.author.fl_str_mv |
Jahnke, Max Reinhold |
dc.subject.por.fl_str_mv |
Cohomologia Cohomologia invariante à esquerda Cohomology Estruturas involutivas Grupos de Lie Hipocomplexidade Hypocomplex Involutive structures Left-invariant cohomology Lie groups Resolubilidade Solvability |
topic |
Cohomologia Cohomologia invariante à esquerda Cohomology Estruturas involutivas Grupos de Lie Hipocomplexidade Hypocomplex Involutive structures Left-invariant cohomology Lie groups Resolubilidade Solvability |
description |
We use the theory of dual of Fréchet-Schwartz (DFS) spaces to establish a sufficient condition for top-degree solvability for the differential complex associated to a hypocomplex locally integrable structure. As an application, we show that the top-degree cohomology of left-invariant hypocomplex structures on a compact Lie group can be computed only by using left-invariant forms, thus reducing the computation to a purely algebraic one. In the case of left-invariant elliptic involutive structures on compact Lie groups, under certain reasonable conditions, we prove that the cohomology associated to the involutive structure can be computed only by using left-invariant forms. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-25032019-092801/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-25032019-092801/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257324299747328 |