Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-20062017-165535/ |
Resumo: | Este estudo tem como objetivo melhorar o desempenho computacional dos algoritmos de inferência em redes credais, aplicando técnicas de computação paralela e sistemas distribuídos em algoritmos de fatoração de matrizes esparsas. Grosso modo, técnicas de computação paralela são técnicas para transformar um sistema em um sistema com algoritmos que possam ser executados concorrentemente. E a fatoração de matrizes são técnicas da matemática para decompor uma matriz em um produto de duas ou mais matrizes. As matrizes esparsas são matrizes que possuem a maioria de seus valores iguais a zero. E as redes credais são semelhantes as redes bayesianas, que são grafos acíclicos que representam uma probabilidade conjunta através de probabilidades condicionais e suas relações de independência. As redes credais podem ser consideradas como uma extensão das redes bayesianas para lidar com incertezas ou a má qualidade dos dados. Para aplicar a técnica de paralelização de fatoração de matrizes esparsas na inferência de redes credais, a inferência utiliza-se da técnica de eliminação de variáveis onde o grafo acíclico da rede credal é associado a uma matriz esparsa e cada variável eliminada é análoga a eliminação de uma coluna. |
id |
USP_f8777dc9c533fd155367343965dc620a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20062017-165535 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsasParallelization of credal network inference using distributed computing for sparse matrix factorization.Credal networkCredal network inferenceEliminação de variáveisFatoração de matrizes esparsasInferência em redes credaisRede credalSparse matrix factorizationVariables eliminationEste estudo tem como objetivo melhorar o desempenho computacional dos algoritmos de inferência em redes credais, aplicando técnicas de computação paralela e sistemas distribuídos em algoritmos de fatoração de matrizes esparsas. Grosso modo, técnicas de computação paralela são técnicas para transformar um sistema em um sistema com algoritmos que possam ser executados concorrentemente. E a fatoração de matrizes são técnicas da matemática para decompor uma matriz em um produto de duas ou mais matrizes. As matrizes esparsas são matrizes que possuem a maioria de seus valores iguais a zero. E as redes credais são semelhantes as redes bayesianas, que são grafos acíclicos que representam uma probabilidade conjunta através de probabilidades condicionais e suas relações de independência. As redes credais podem ser consideradas como uma extensão das redes bayesianas para lidar com incertezas ou a má qualidade dos dados. Para aplicar a técnica de paralelização de fatoração de matrizes esparsas na inferência de redes credais, a inferência utiliza-se da técnica de eliminação de variáveis onde o grafo acíclico da rede credal é associado a uma matriz esparsa e cada variável eliminada é análoga a eliminação de uma coluna.This study\'s objective is the computational performance improvement of credal network inference algorithms by applying computational parallel and distributed system techniques of sparse matrix factorization algorithms. Roughly, computational parallel techniques are used to transform systems in systems with algorithms that can be executed concurrently. And the matrix factorization is a group of mathematical techniques to decompose a matrix in a product of two or more matrixes. The sparse matrixes are matrixes which have most of their values equal to zero. And credal networks are similar to Bayesian networks, which are acyclic graphs representing a joint probability through conditional probabilities and their independence relations. Credal networks can be considered as a Bayesian network extension because of their manner of leading to uncertainty and the poor data quality. To apply parallel techniques of sparse matrix factorization in credal network inference the variable elimination method was used, where the credal network acyclic graph is associated to a sparse matrix and every eliminated variable is analogous to an eliminated column.Biblioteca Digitais de Teses e Dissertações da USPStern, Julio MichaelPereira, Ramon Fortes2017-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-20062017-165535/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-20062017-165535Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas Parallelization of credal network inference using distributed computing for sparse matrix factorization. |
title |
Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas |
spellingShingle |
Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas Pereira, Ramon Fortes Credal network Credal network inference Eliminação de variáveis Fatoração de matrizes esparsas Inferência em redes credais Rede credal Sparse matrix factorization Variables elimination |
title_short |
Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas |
title_full |
Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas |
title_fullStr |
Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas |
title_full_unstemmed |
Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas |
title_sort |
Paralelização de inferência em redes credais utilizando computação distribuída para fatoração de matrizes esparsas |
author |
Pereira, Ramon Fortes |
author_facet |
Pereira, Ramon Fortes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Stern, Julio Michael |
dc.contributor.author.fl_str_mv |
Pereira, Ramon Fortes |
dc.subject.por.fl_str_mv |
Credal network Credal network inference Eliminação de variáveis Fatoração de matrizes esparsas Inferência em redes credais Rede credal Sparse matrix factorization Variables elimination |
topic |
Credal network Credal network inference Eliminação de variáveis Fatoração de matrizes esparsas Inferência em redes credais Rede credal Sparse matrix factorization Variables elimination |
description |
Este estudo tem como objetivo melhorar o desempenho computacional dos algoritmos de inferência em redes credais, aplicando técnicas de computação paralela e sistemas distribuídos em algoritmos de fatoração de matrizes esparsas. Grosso modo, técnicas de computação paralela são técnicas para transformar um sistema em um sistema com algoritmos que possam ser executados concorrentemente. E a fatoração de matrizes são técnicas da matemática para decompor uma matriz em um produto de duas ou mais matrizes. As matrizes esparsas são matrizes que possuem a maioria de seus valores iguais a zero. E as redes credais são semelhantes as redes bayesianas, que são grafos acíclicos que representam uma probabilidade conjunta através de probabilidades condicionais e suas relações de independência. As redes credais podem ser consideradas como uma extensão das redes bayesianas para lidar com incertezas ou a má qualidade dos dados. Para aplicar a técnica de paralelização de fatoração de matrizes esparsas na inferência de redes credais, a inferência utiliza-se da técnica de eliminação de variáveis onde o grafo acíclico da rede credal é associado a uma matriz esparsa e cada variável eliminada é análoga a eliminação de uma coluna. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-20062017-165535/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-20062017-165535/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257158580699136 |