Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04012013-170011/ |
Resumo: | Sejam $F$ um corpo de característica diferente de $2$ e $G$ um grupo. A partir da involução clássica, que envia cada elemento em seu inverso, e uma orientação do grupo $G$ é possível definir uma involução clássica orientada na álgebra de grupo $FG$. O objetivo desta tese é estudar propriedades de Lie do conjunto dos elementos simétricos $(FG)^+$ e, em alguns casos, do conjunto dos elementos anti-simétricos $(FG)^-$. Primeiro, abordamos o caso quando $G$ não tem elementos de ordem $2$. Aqui, mostramos que se $(FG)^+$ (ou $(FG)^-$) é Lie nilpotente ou Lie $n$-Engel, então $FG$ também é Lie nilpotente ou Lie $m$-Engel, respectivamente. Depois, consideramos o caso quando $G$ contém uma cópia do grupo quatérnio de ordem $8$. Neste caso, caracterizamos completamente as álgebras de grupo tais que $(FG)^+$ é fortemente Lie nilpotente, Lie nilpotente e Lie $n$-Engel. Como consequência, provamos que o conjunto das unidades simétricas deste tipo de grupos é nilpotente. Estudamos também o caso em que quando $G$ não contém uma cópia do grupo quatérnio de ordem $8$. Em particular, apresentamos um exemplo que mostra que os resultados obtidos em pesquisas anteriores, com a involução clássica, não devem ser esperados ao trabalhar com involuções clássicas orientadas. Não entanto, damos alguns casos especiais de grupos nos quais esses resultados são obtidos. Finalmente, estudamos o índice de Lie nilpotência de $(FG)^+$. Estabelecemos uma condição necessária e suficiente, para que o índice de Lie nilpotência de $(FG)^+$ e a classe de nilpotência das unidades simétricas de uma álgebra de grupo Lie nilpotente sejam o maior possível. Além disso, consideramos a situação em que o grupo $G$ contém uma cópia de $Q_8$. |
id |
USP_fd18a8912049bd01799c150d08b40f95 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04012013-170011 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupoLie properties of symmetric elements under oriented involutions in group algebrasálgebras de grupoelemento anti-simétricoelemento simétricofortemente Lie nilpotentegroup algebrasíndice de Lie nilpotência.involuçãoinvolutionLie $n$-EngelLie $n$-EngelLie nilpotency index.Lie nilpotentLie nilpotenteorientaçãoorientationskew-symmetric elementstrongly Lie nilpotentsymmetric elementSejam $F$ um corpo de característica diferente de $2$ e $G$ um grupo. A partir da involução clássica, que envia cada elemento em seu inverso, e uma orientação do grupo $G$ é possível definir uma involução clássica orientada na álgebra de grupo $FG$. O objetivo desta tese é estudar propriedades de Lie do conjunto dos elementos simétricos $(FG)^+$ e, em alguns casos, do conjunto dos elementos anti-simétricos $(FG)^-$. Primeiro, abordamos o caso quando $G$ não tem elementos de ordem $2$. Aqui, mostramos que se $(FG)^+$ (ou $(FG)^-$) é Lie nilpotente ou Lie $n$-Engel, então $FG$ também é Lie nilpotente ou Lie $m$-Engel, respectivamente. Depois, consideramos o caso quando $G$ contém uma cópia do grupo quatérnio de ordem $8$. Neste caso, caracterizamos completamente as álgebras de grupo tais que $(FG)^+$ é fortemente Lie nilpotente, Lie nilpotente e Lie $n$-Engel. Como consequência, provamos que o conjunto das unidades simétricas deste tipo de grupos é nilpotente. Estudamos também o caso em que quando $G$ não contém uma cópia do grupo quatérnio de ordem $8$. Em particular, apresentamos um exemplo que mostra que os resultados obtidos em pesquisas anteriores, com a involução clássica, não devem ser esperados ao trabalhar com involuções clássicas orientadas. Não entanto, damos alguns casos especiais de grupos nos quais esses resultados são obtidos. Finalmente, estudamos o índice de Lie nilpotência de $(FG)^+$. Estabelecemos uma condição necessária e suficiente, para que o índice de Lie nilpotência de $(FG)^+$ e a classe de nilpotência das unidades simétricas de uma álgebra de grupo Lie nilpotente sejam o maior possível. Além disso, consideramos a situação em que o grupo $G$ contém uma cópia de $Q_8$.Let $F$ be a field of characteristic different from $2$ and $G$ a group. From the classical involution, which sends each element in its inverse and an orientation of $G$, it is possible to define an oriented classical involution on the group algebra $FG$. The goal of this thesis is to study Lie properties of the set of symmetric elements $(FG)^+$ and, in some cases, of the set of skew-symmetric elements $(FG)^-$. We first deal with the case when $G$ does not have elements of order $2$. In this situation, we show that if $(FG)^+$ (or $(FG)^-$) is Lie nilpotent or Lie $n$-Engel, then the whole group algebra $FG$ satisfies the same property. Later we consider the case when $G$ contains a copy of the quaternion group of order $8$. In this instance, we give a complete description of the group algebras such that $(FG)^+$ is strongly Lie nilpotent, Lie nilpotent and Lie $n$-Engel. As a consequence, we get that the set of symmetric units of this kind of groups is nilpotent. Furthermore, we study the case when $G$ does not contain a copy of the quaternion group of order $8$. Here, we present an example that shows that the previews results obtained in former works, with the classical involution, may not hold with an oriented classical involution. However, we give some kinds of groups for which those results are achieved. Finally, we study the Lie nilpotency index of $(FG)^+$. It is given a necessary and sufficient condition to the Lie nilpotency index of $(FG)^+$ and the nilpotency class of the symmetric units to be maximal, in a Lie nilpotent group algebra. In addition, we consider the situation when $G$ contains a copy of the quaternion group of order $8$.Biblioteca Digitais de Teses e Dissertações da USPMilies, Francisco Cesar PolcinoCastillo Gomez, John Hermes 2012-11-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-04012013-170011/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:35Zoai:teses.usp.br:tde-04012013-170011Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo Lie properties of symmetric elements under oriented involutions in group algebras |
title |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo |
spellingShingle |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo Castillo Gomez, John Hermes álgebras de grupo elemento anti-simétrico elemento simétrico fortemente Lie nilpotente group algebras índice de Lie nilpotência. involução involution Lie $n$-Engel Lie $n$-Engel Lie nilpotency index. Lie nilpotent Lie nilpotente orientação orientation skew-symmetric element strongly Lie nilpotent symmetric element |
title_short |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo |
title_full |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo |
title_fullStr |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo |
title_full_unstemmed |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo |
title_sort |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo |
author |
Castillo Gomez, John Hermes |
author_facet |
Castillo Gomez, John Hermes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Milies, Francisco Cesar Polcino |
dc.contributor.author.fl_str_mv |
Castillo Gomez, John Hermes |
dc.subject.por.fl_str_mv |
álgebras de grupo elemento anti-simétrico elemento simétrico fortemente Lie nilpotente group algebras índice de Lie nilpotência. involução involution Lie $n$-Engel Lie $n$-Engel Lie nilpotency index. Lie nilpotent Lie nilpotente orientação orientation skew-symmetric element strongly Lie nilpotent symmetric element |
topic |
álgebras de grupo elemento anti-simétrico elemento simétrico fortemente Lie nilpotente group algebras índice de Lie nilpotência. involução involution Lie $n$-Engel Lie $n$-Engel Lie nilpotency index. Lie nilpotent Lie nilpotente orientação orientation skew-symmetric element strongly Lie nilpotent symmetric element |
description |
Sejam $F$ um corpo de característica diferente de $2$ e $G$ um grupo. A partir da involução clássica, que envia cada elemento em seu inverso, e uma orientação do grupo $G$ é possível definir uma involução clássica orientada na álgebra de grupo $FG$. O objetivo desta tese é estudar propriedades de Lie do conjunto dos elementos simétricos $(FG)^+$ e, em alguns casos, do conjunto dos elementos anti-simétricos $(FG)^-$. Primeiro, abordamos o caso quando $G$ não tem elementos de ordem $2$. Aqui, mostramos que se $(FG)^+$ (ou $(FG)^-$) é Lie nilpotente ou Lie $n$-Engel, então $FG$ também é Lie nilpotente ou Lie $m$-Engel, respectivamente. Depois, consideramos o caso quando $G$ contém uma cópia do grupo quatérnio de ordem $8$. Neste caso, caracterizamos completamente as álgebras de grupo tais que $(FG)^+$ é fortemente Lie nilpotente, Lie nilpotente e Lie $n$-Engel. Como consequência, provamos que o conjunto das unidades simétricas deste tipo de grupos é nilpotente. Estudamos também o caso em que quando $G$ não contém uma cópia do grupo quatérnio de ordem $8$. Em particular, apresentamos um exemplo que mostra que os resultados obtidos em pesquisas anteriores, com a involução clássica, não devem ser esperados ao trabalhar com involuções clássicas orientadas. Não entanto, damos alguns casos especiais de grupos nos quais esses resultados são obtidos. Finalmente, estudamos o índice de Lie nilpotência de $(FG)^+$. Estabelecemos uma condição necessária e suficiente, para que o índice de Lie nilpotência de $(FG)^+$ e a classe de nilpotência das unidades simétricas de uma álgebra de grupo Lie nilpotente sejam o maior possível. Além disso, consideramos a situação em que o grupo $G$ contém uma cópia de $Q_8$. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04012013-170011/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04012013-170011/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256708803461120 |