Sistemas Aumentados de Grupos e Shifts de Tipo Finito
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06032018-084334/ |
Resumo: | Seja (G, X, x) uma terna consistindo de um grupo finitamente apresentado G, um epimorfismo x : G → Z, e um elemento distingüido x ∈ G tal que x(x) = 1. Dado um grupo simétrico, construímos um grafo direcionado finito ⌈ que descreve o conjunto Φr de representações ρ Ker (x) → Sr bem como a aplicação σx : Φr → Φr definida por (σxρ)(a) = ρ(x-1 ax) para todo a ∈ Ker(x). O par (Φr, σx) tem a estrutura de um shift de tipo finito. Discutimos propriedades básicas e aplicações do shift representação (Φr, σx), incluindo aplicações à Teoria de Nós. |
id |
USP_fe0b82823c195955f87a6b343960fd9b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-06032018-084334 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Sistemas Aumentados de Grupos e Shifts de Tipo FinitoNot availableNão disponívelNot availableSeja (G, X, x) uma terna consistindo de um grupo finitamente apresentado G, um epimorfismo x : G → Z, e um elemento distingüido x ∈ G tal que x(x) = 1. Dado um grupo simétrico, construímos um grafo direcionado finito ⌈ que descreve o conjunto Φr de representações ρ Ker (x) → Sr bem como a aplicação σx : Φr → Φr definida por (σxρ)(a) = ρ(x-1 ax) para todo a ∈ Ker(x). O par (Φr, σx) tem a estrutura de um shift de tipo finito. Discutimos propriedades básicas e aplicações do shift representação (Φr, σx), incluindo aplicações à Teoria de Nós.Let (G, X, x) be a triple consisting of a finitely presented group G, an epimorphism x: G → Z, and a distinguished element x ∈ G such that X(x) = 1. Given a finite symmetric group Sr, we construct a finite directed graph ⌈ that describes the set of Φr of representations p: Ker(x) → Sr as well as the mapping σx : Φr → Φr defined by (σxρp)(a) = ρ(x-lax) for all a ∈ Ker(x). The pair (Φr, σx) has the structure of a shift of finite type. We discuss basic properties and applications of the representation shift (Φr, σx), including applications to knot theory.Biblioteca Digitais de Teses e Dissertações da USPManzoli Neto, OzirideTraldi, Eliane Zerbetto1999-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-06032018-084334/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-06032018-084334Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Sistemas Aumentados de Grupos e Shifts de Tipo Finito Not available |
title |
Sistemas Aumentados de Grupos e Shifts de Tipo Finito |
spellingShingle |
Sistemas Aumentados de Grupos e Shifts de Tipo Finito Traldi, Eliane Zerbetto Não disponível Not available |
title_short |
Sistemas Aumentados de Grupos e Shifts de Tipo Finito |
title_full |
Sistemas Aumentados de Grupos e Shifts de Tipo Finito |
title_fullStr |
Sistemas Aumentados de Grupos e Shifts de Tipo Finito |
title_full_unstemmed |
Sistemas Aumentados de Grupos e Shifts de Tipo Finito |
title_sort |
Sistemas Aumentados de Grupos e Shifts de Tipo Finito |
author |
Traldi, Eliane Zerbetto |
author_facet |
Traldi, Eliane Zerbetto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Manzoli Neto, Oziride |
dc.contributor.author.fl_str_mv |
Traldi, Eliane Zerbetto |
dc.subject.por.fl_str_mv |
Não disponível Not available |
topic |
Não disponível Not available |
description |
Seja (G, X, x) uma terna consistindo de um grupo finitamente apresentado G, um epimorfismo x : G → Z, e um elemento distingüido x ∈ G tal que x(x) = 1. Dado um grupo simétrico, construímos um grafo direcionado finito ⌈ que descreve o conjunto Φr de representações ρ Ker (x) → Sr bem como a aplicação σx : Φr → Φr definida por (σxρ)(a) = ρ(x-1 ax) para todo a ∈ Ker(x). O par (Φr, σx) tem a estrutura de um shift de tipo finito. Discutimos propriedades básicas e aplicações do shift representação (Φr, σx), incluindo aplicações à Teoria de Nós. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-02-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06032018-084334/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06032018-084334/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256761771229184 |