Síntese de C-glicosídeos e derivados a partir de fontes renováveis

Detalhes bibliográficos
Autor(a) principal: Vieira, Thiago Antonio
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/97/97136/tde-03122018-170834/
Resumo: Os carboidratos são componentes essenciais de muitos produtos naturais de grande importância medicinal. As porções carboidrato podem aumentar a solubilidade em água de drogas, diminuir a toxicidade e/ou contribuir para a bioatividade dos produtos naturais. A síntese de C-glicosídeos, a partir de D-glicose, é de grande interesse porque estes são úteis como blocos de construção para a síntese de vários tipos de moléculas com grande potencial de utilização em princípios ativos para tratamento de câncer, diabetes, HIV, como antivirais, entre outros. Os C-glicosídeos são essencialmente inertes à degradação porque o centro anomérico natural (um O- ou N-acetal instável) foi transformado hidroliticamente em ligação éter. Como resultado, uma atenção significativa tem sido dedicada para o desenvolvimento de novas vias sintéticas. A reação de Knoevenagel, descrita há mais de um século, consiste na condensação de aldeídos com moléculas contendo metileno ativo, tais como o ácido malônico ou o seu éster e dicetonas. Embora consista de uma desidratação, surpreendentemente, a reação é favorecida em meio aquoso, em alguns casos. A condensação de carboidratos desprotegidos com dicetonas tem atraído crescente interesse com a crescente cobrança da sociedade por tecnologias mais limpas (verdes). Nesse sentido, baseando-se no conceito de Química Verde e seus Doze princípios, buscou-se a redução ou troca de solventes orgânicos por outros mais verdes, adaptação dos sistemas de reação para operação em temperaturas mais brandas e substituição de matérias-primas por outras mais verdes. O objetivo principal consistiu na preparação da cetona-?-C-glicosídeo (CG) e seus derivados, a partir da D-glicose, com potencial aplicação como intermediários de fármacos. Nesse trabalho, foram preparados derivados do CG e da D-glicose: CG peracetilado, D-glicose peracetilada, CG perbenzoilado, D-glicose perbenzoilada, CG peracetilado clorado, CGAr1 ((E)-4-(4-metoxifenil)-1-(3,4,5-trihidroxi-6- (hidroximetil)-tetrahidro-2H-piran-2-il)but-3-en-2-ona), CGAr1 peracetilado e CGAr1 peracetilado bromado. O CG foi preparado em meio aquoso ou em EtOH-água 4:1, pH alcalino (35-80%). O CG peracetilado (2,3,4,6-tetracetil-1-C-(?-D-glicopiranosil)propan-2-ona) e a Dglicose peracetilada (1,2,3,4,6-pentacetil-1-C-(?-D-glicopiranosil)) foram preparados (71 e 77,5%) usando quatro metodologias: duas usando AcONa/Ac2O a 50-90 °C, uma com AcONa/py/DMAP a t.a. e uma com I2/Ac2O a 28 °C. O CG perbenzoilado (2,3,4,6-tetrabenzoil- 1-C-(?-D-glicopiranosil)propan-2-ona) e a D-glicose perbenzoilada (1,2,3,4,6-pentabenzoil-1-C- (?-D-glicopiranosil) foram preparados (31 e 83%), respectivamente, usando sete metodologias: duas em solução de NaOH a t.a., quatro com py e DCM e/ou tolueno como solvente a 65 °C, uma com py/DCM a 5 °C. O CG peracetilado clorado (2-(acetoximetil)-6-(3-cloro-2- oxopropil)tetrahidro-2H-piran-3,4,5-triil triacetato) foi preparado (19,6%) usando NH4Cl/oxone em MeOH sob refluxo. O CGAr1 foi preparado a partir do CG bruto com p-anisaldeído, L-prolina e TEA em MeOH a t.a (33,5%). O CGAr1 peracetilado ((E)-2-(acetoximetil)-6-(4-(4-metoxifenil)- 2-oxobut-3-en-1-il)-tetrahidro-2H-piran-3,4,5-triil triacetato) foi preparado (54%) usando três metodologias: Ac2O/AcONa a 50 °C, I2/Ac2O a 28 e a 50°C. O CGAr1 peracetilado bromado foi preparado (78%) usando Br2/CCl4 a t.a.
id USP_feeca1ce17030d306978f21450fd27e9
oai_identifier_str oai:teses.usp.br:tde-03122018-170834
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Síntese de C-glicosídeos e derivados a partir de fontes renováveisSynthesis of C-glycosides and derivatives from renewable sourcesC-GlicosídeoC-GlycosideCondensação de KnoevenagelDrugsFármacosGlicoseGlucoseKnoevenagel condensationProtection reactionsReações de proteçãoOs carboidratos são componentes essenciais de muitos produtos naturais de grande importância medicinal. As porções carboidrato podem aumentar a solubilidade em água de drogas, diminuir a toxicidade e/ou contribuir para a bioatividade dos produtos naturais. A síntese de C-glicosídeos, a partir de D-glicose, é de grande interesse porque estes são úteis como blocos de construção para a síntese de vários tipos de moléculas com grande potencial de utilização em princípios ativos para tratamento de câncer, diabetes, HIV, como antivirais, entre outros. Os C-glicosídeos são essencialmente inertes à degradação porque o centro anomérico natural (um O- ou N-acetal instável) foi transformado hidroliticamente em ligação éter. Como resultado, uma atenção significativa tem sido dedicada para o desenvolvimento de novas vias sintéticas. A reação de Knoevenagel, descrita há mais de um século, consiste na condensação de aldeídos com moléculas contendo metileno ativo, tais como o ácido malônico ou o seu éster e dicetonas. Embora consista de uma desidratação, surpreendentemente, a reação é favorecida em meio aquoso, em alguns casos. A condensação de carboidratos desprotegidos com dicetonas tem atraído crescente interesse com a crescente cobrança da sociedade por tecnologias mais limpas (verdes). Nesse sentido, baseando-se no conceito de Química Verde e seus Doze princípios, buscou-se a redução ou troca de solventes orgânicos por outros mais verdes, adaptação dos sistemas de reação para operação em temperaturas mais brandas e substituição de matérias-primas por outras mais verdes. O objetivo principal consistiu na preparação da cetona-?-C-glicosídeo (CG) e seus derivados, a partir da D-glicose, com potencial aplicação como intermediários de fármacos. Nesse trabalho, foram preparados derivados do CG e da D-glicose: CG peracetilado, D-glicose peracetilada, CG perbenzoilado, D-glicose perbenzoilada, CG peracetilado clorado, CGAr1 ((E)-4-(4-metoxifenil)-1-(3,4,5-trihidroxi-6- (hidroximetil)-tetrahidro-2H-piran-2-il)but-3-en-2-ona), CGAr1 peracetilado e CGAr1 peracetilado bromado. O CG foi preparado em meio aquoso ou em EtOH-água 4:1, pH alcalino (35-80%). O CG peracetilado (2,3,4,6-tetracetil-1-C-(?-D-glicopiranosil)propan-2-ona) e a Dglicose peracetilada (1,2,3,4,6-pentacetil-1-C-(?-D-glicopiranosil)) foram preparados (71 e 77,5%) usando quatro metodologias: duas usando AcONa/Ac2O a 50-90 °C, uma com AcONa/py/DMAP a t.a. e uma com I2/Ac2O a 28 °C. O CG perbenzoilado (2,3,4,6-tetrabenzoil- 1-C-(?-D-glicopiranosil)propan-2-ona) e a D-glicose perbenzoilada (1,2,3,4,6-pentabenzoil-1-C- (?-D-glicopiranosil) foram preparados (31 e 83%), respectivamente, usando sete metodologias: duas em solução de NaOH a t.a., quatro com py e DCM e/ou tolueno como solvente a 65 °C, uma com py/DCM a 5 °C. O CG peracetilado clorado (2-(acetoximetil)-6-(3-cloro-2- oxopropil)tetrahidro-2H-piran-3,4,5-triil triacetato) foi preparado (19,6%) usando NH4Cl/oxone em MeOH sob refluxo. O CGAr1 foi preparado a partir do CG bruto com p-anisaldeído, L-prolina e TEA em MeOH a t.a (33,5%). O CGAr1 peracetilado ((E)-2-(acetoximetil)-6-(4-(4-metoxifenil)- 2-oxobut-3-en-1-il)-tetrahidro-2H-piran-3,4,5-triil triacetato) foi preparado (54%) usando três metodologias: Ac2O/AcONa a 50 °C, I2/Ac2O a 28 e a 50°C. O CGAr1 peracetilado bromado foi preparado (78%) usando Br2/CCl4 a t.a.Carbohydrates are essential components of many natural products of great medicinal importance. The carbohydrate portions may increase the water solubility of drugs, decrease toxicity and/or contribute to the bioactivity of the natural products. The synthesis of Cglycosides, from D-glucose, is of great interest because they are useful as building blocks for the synthesis of various types of molecules with great potential as active principles for the treatment of cancer, diabetes, HIV, as antivirals, among others. C-glycosides are essentially inert to degradation because their natural anomeric center (an unstable O- or N-acetal) has been hydrolytically transformed into an ether linkage. Thus, significant attention has been devoted to the development of new synthetic routes. The Knoevenagel reaction, described over a century ago, consists of the condensation of aldehydes with molecules containing active methylene, such as malonic acid or its ester and diketones. Although it consists of a dehydration, surprisingly, the reaction is favored in aqueous medium in some cases. The condensation of unprotected carbohydrates with diketones has attracted increasing interest with the growing society\'s demand for cleaner (green) technologies. Based on the concept of Green Chemistry and its Twelve Principles, the aim was to reduce or substitute organic solventes for greener ones, adapt reaction systems to operate at milder temperatures and substitute raw materials for greener ones. The main goal was to prepare ketone-?-C-glucoside (CG) and its derivatives, from D-glucose, with potential application as drug intermediates. In this work, CG and D-glucose derivatives were prepared: peracetylated CG, peracetylated D-glucose, perbenzoylated CG, perbenzoylated D-glucose, chlorinated peracetylated CG, CGAr1 ((E)-4-(4- methoxyphenyl)-1-(3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yl)but-3-en-2- one), peracetylated CGAr1 and brominated peracetylated CGAr1. CG was prepared (35-80%) in water or EtOH-water (4:1), alkaline pH. Peracetylated CG (2,3,4,6-tetraacetyl-1-C-(?-Dglucopyranosyl) propan-2-one) and peracetylated D-glucose (1,2,3,4,6-pentacetyl-1-C-(?-Dglucopyranosyl)) were prepared (71 and 77,5%), using four methodologies: two using AcONa/ Ac2O at 50-90 °C, one with AcONa/py/DMAP at rt and one with I2/Ac2O at 28 °C. The perbenzoylated CG (2,3,4,6-tetrabenzoyl-1-C-(?-D-glucopyranosyl)propan-2-one) and perbenzoylated D-glucose (1,2,3,4,6-pentabenzoyl-1-C-(?-D-glucopyranosyl) were prepared (31 and 83%) using seven methodologies: two in NaOH aqueous solution, four with py and DCM and/or toluene as solvent at 65 °C. Chlorinated peracetylated CG (2-(acetoxymethyl)-6-(3- chloro-2-oxopropyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate) was prepared (19,6%) using NH4Cl/oxone in MeOH under reflux. CGAr1 was prepared from crude CG with p-anisaldehyde, L-proline and TEA in MeOH at rt (33,5%). The peracetylated CGAr1 ((E)-2-(acetoxymethyl)-6- (4-(4-methoxyphenyl)-2-oxobut-3-en-1-yl)-tetrahydro-2H-pyran-3,4,5-triyl triacetate) was prepared (54%) using three methodologies: Ac2O/AcONa at 50 °C, I2/Ac2O at 28 and at 50 °C. Brominated peracetylated CGAr1 was prepared (78%) using Br2/CCl4 at rt.Biblioteca Digitais de Teses e Dissertações da USPSerra, Antonio AarãoVieira, Thiago Antonio2017-09-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/97/97136/tde-03122018-170834/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-10T00:06:19Zoai:teses.usp.br:tde-03122018-170834Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-10T00:06:19Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Síntese de C-glicosídeos e derivados a partir de fontes renováveis
Synthesis of C-glycosides and derivatives from renewable sources
title Síntese de C-glicosídeos e derivados a partir de fontes renováveis
spellingShingle Síntese de C-glicosídeos e derivados a partir de fontes renováveis
Vieira, Thiago Antonio
C-Glicosídeo
C-Glycoside
Condensação de Knoevenagel
Drugs
Fármacos
Glicose
Glucose
Knoevenagel condensation
Protection reactions
Reações de proteção
title_short Síntese de C-glicosídeos e derivados a partir de fontes renováveis
title_full Síntese de C-glicosídeos e derivados a partir de fontes renováveis
title_fullStr Síntese de C-glicosídeos e derivados a partir de fontes renováveis
title_full_unstemmed Síntese de C-glicosídeos e derivados a partir de fontes renováveis
title_sort Síntese de C-glicosídeos e derivados a partir de fontes renováveis
author Vieira, Thiago Antonio
author_facet Vieira, Thiago Antonio
author_role author
dc.contributor.none.fl_str_mv Serra, Antonio Aarão
dc.contributor.author.fl_str_mv Vieira, Thiago Antonio
dc.subject.por.fl_str_mv C-Glicosídeo
C-Glycoside
Condensação de Knoevenagel
Drugs
Fármacos
Glicose
Glucose
Knoevenagel condensation
Protection reactions
Reações de proteção
topic C-Glicosídeo
C-Glycoside
Condensação de Knoevenagel
Drugs
Fármacos
Glicose
Glucose
Knoevenagel condensation
Protection reactions
Reações de proteção
description Os carboidratos são componentes essenciais de muitos produtos naturais de grande importância medicinal. As porções carboidrato podem aumentar a solubilidade em água de drogas, diminuir a toxicidade e/ou contribuir para a bioatividade dos produtos naturais. A síntese de C-glicosídeos, a partir de D-glicose, é de grande interesse porque estes são úteis como blocos de construção para a síntese de vários tipos de moléculas com grande potencial de utilização em princípios ativos para tratamento de câncer, diabetes, HIV, como antivirais, entre outros. Os C-glicosídeos são essencialmente inertes à degradação porque o centro anomérico natural (um O- ou N-acetal instável) foi transformado hidroliticamente em ligação éter. Como resultado, uma atenção significativa tem sido dedicada para o desenvolvimento de novas vias sintéticas. A reação de Knoevenagel, descrita há mais de um século, consiste na condensação de aldeídos com moléculas contendo metileno ativo, tais como o ácido malônico ou o seu éster e dicetonas. Embora consista de uma desidratação, surpreendentemente, a reação é favorecida em meio aquoso, em alguns casos. A condensação de carboidratos desprotegidos com dicetonas tem atraído crescente interesse com a crescente cobrança da sociedade por tecnologias mais limpas (verdes). Nesse sentido, baseando-se no conceito de Química Verde e seus Doze princípios, buscou-se a redução ou troca de solventes orgânicos por outros mais verdes, adaptação dos sistemas de reação para operação em temperaturas mais brandas e substituição de matérias-primas por outras mais verdes. O objetivo principal consistiu na preparação da cetona-?-C-glicosídeo (CG) e seus derivados, a partir da D-glicose, com potencial aplicação como intermediários de fármacos. Nesse trabalho, foram preparados derivados do CG e da D-glicose: CG peracetilado, D-glicose peracetilada, CG perbenzoilado, D-glicose perbenzoilada, CG peracetilado clorado, CGAr1 ((E)-4-(4-metoxifenil)-1-(3,4,5-trihidroxi-6- (hidroximetil)-tetrahidro-2H-piran-2-il)but-3-en-2-ona), CGAr1 peracetilado e CGAr1 peracetilado bromado. O CG foi preparado em meio aquoso ou em EtOH-água 4:1, pH alcalino (35-80%). O CG peracetilado (2,3,4,6-tetracetil-1-C-(?-D-glicopiranosil)propan-2-ona) e a Dglicose peracetilada (1,2,3,4,6-pentacetil-1-C-(?-D-glicopiranosil)) foram preparados (71 e 77,5%) usando quatro metodologias: duas usando AcONa/Ac2O a 50-90 °C, uma com AcONa/py/DMAP a t.a. e uma com I2/Ac2O a 28 °C. O CG perbenzoilado (2,3,4,6-tetrabenzoil- 1-C-(?-D-glicopiranosil)propan-2-ona) e a D-glicose perbenzoilada (1,2,3,4,6-pentabenzoil-1-C- (?-D-glicopiranosil) foram preparados (31 e 83%), respectivamente, usando sete metodologias: duas em solução de NaOH a t.a., quatro com py e DCM e/ou tolueno como solvente a 65 °C, uma com py/DCM a 5 °C. O CG peracetilado clorado (2-(acetoximetil)-6-(3-cloro-2- oxopropil)tetrahidro-2H-piran-3,4,5-triil triacetato) foi preparado (19,6%) usando NH4Cl/oxone em MeOH sob refluxo. O CGAr1 foi preparado a partir do CG bruto com p-anisaldeído, L-prolina e TEA em MeOH a t.a (33,5%). O CGAr1 peracetilado ((E)-2-(acetoximetil)-6-(4-(4-metoxifenil)- 2-oxobut-3-en-1-il)-tetrahidro-2H-piran-3,4,5-triil triacetato) foi preparado (54%) usando três metodologias: Ac2O/AcONa a 50 °C, I2/Ac2O a 28 e a 50°C. O CGAr1 peracetilado bromado foi preparado (78%) usando Br2/CCl4 a t.a.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/97/97136/tde-03122018-170834/
url http://www.teses.usp.br/teses/disponiveis/97/97136/tde-03122018-170834/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090356238614528