Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo

Detalhes bibliográficos
Autor(a) principal: Squarcio, Roberto Mauro Felix
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/26177
Resumo: Na mecânica estrutural estocástica, o tratamento da incerteza é frequentemente o principal objetivo das simulações numéricas utilizadas para estimar as respostas de um sistema ou fenômeno físico. Essas previsões podem formar a base para a tomada de decisões e, portanto, uma questão relevante a ser estudada é o quão confiável elas são. As incertezas, em geral, são avaliadas sob dois aspectos: a partir da informação estatística disponível e considerando o modelo matemático que representa o problema numericamente. O modelo identifica um conjunto de relações geralmente baseadas em princípios, leis de conservação e métricas de magnitude física. No caso do problema de flexão estocástica de viga é possível associar a aleatoriedade às propriedades do material, da geometria e as cargas atuantes sobre a estrutura e, desta forma as estimativas das respostas estarão presentes no campo de deslocamento, tensão e deformação. No presente trabalho, a formulação variacional do problema estocástico de valor de contorno elíptico com coeficientes aleatórios é estudada à luz da versão estocástica do lema de Lax-Milgram e a propagação e quantificação da incerteza são investigadas a partir da recente metodologia numérica de complexidade assintótica λ-Neumann Monte Carlo. Os resultados da simulação numérica são obtidos para o problema de flexão estocástica de viga de Levinson-Bickford. Esta teoria de alta ordem apresenta a vantagem de atender à condição de cisalhamento nulo nas superfícies laterais e sua formulação pelo método dos Elementos Finitos evita o inconveniente numérico de travamento (shear locking). As soluções são apresentadas sobre um conjunto de aproximações numéricas através de estimativas de erro dos estimadores de valor esperado e variância do campo de deslocamento. São comparados diferentes métodos de quantificação, modelagem da incerteza, condições de contorno, coeficiente de variação e propriedades material e geométrica da viga.
id UTFPR-12_1e6552472896f8fef45b4a8323ac779b
oai_identifier_str oai:repositorio.utfpr.edu.br:1/26177
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2021-10-18T21:19:31Z2021-10-18T21:19:31Z2021-08-10SQUARCIO, Roberto Mauro Felix. Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo. 2021. Tese (Doutorado em Engenharia Mecânica e de Materiais) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021.http://repositorio.utfpr.edu.br/jspui/handle/1/26177Na mecânica estrutural estocástica, o tratamento da incerteza é frequentemente o principal objetivo das simulações numéricas utilizadas para estimar as respostas de um sistema ou fenômeno físico. Essas previsões podem formar a base para a tomada de decisões e, portanto, uma questão relevante a ser estudada é o quão confiável elas são. As incertezas, em geral, são avaliadas sob dois aspectos: a partir da informação estatística disponível e considerando o modelo matemático que representa o problema numericamente. O modelo identifica um conjunto de relações geralmente baseadas em princípios, leis de conservação e métricas de magnitude física. No caso do problema de flexão estocástica de viga é possível associar a aleatoriedade às propriedades do material, da geometria e as cargas atuantes sobre a estrutura e, desta forma as estimativas das respostas estarão presentes no campo de deslocamento, tensão e deformação. No presente trabalho, a formulação variacional do problema estocástico de valor de contorno elíptico com coeficientes aleatórios é estudada à luz da versão estocástica do lema de Lax-Milgram e a propagação e quantificação da incerteza são investigadas a partir da recente metodologia numérica de complexidade assintótica λ-Neumann Monte Carlo. Os resultados da simulação numérica são obtidos para o problema de flexão estocástica de viga de Levinson-Bickford. Esta teoria de alta ordem apresenta a vantagem de atender à condição de cisalhamento nulo nas superfícies laterais e sua formulação pelo método dos Elementos Finitos evita o inconveniente numérico de travamento (shear locking). As soluções são apresentadas sobre um conjunto de aproximações numéricas através de estimativas de erro dos estimadores de valor esperado e variância do campo de deslocamento. São comparados diferentes métodos de quantificação, modelagem da incerteza, condições de contorno, coeficiente de variação e propriedades material e geométrica da viga.In stochastic structural mechanics, the treatment of uncertainty is often the main goal of numerical simulations used to estimate the responses of a system or physical phenomenon. These predictions can form the basis for decision making, and therefore a relevant question to be studied is how reliable they are. In general, uncertainties are evaluated from two aspects: from the available statistical information and by considering the mathematical model that represents the problem in a numerical way. The model identifies a set of relationships usually based on principles, conservation laws, and metrics of physical magnitude. In the case of the stochastic beam bending problem, it is possible to associate randomness to material properties, geometry and loads acting on the structure, and thus the response estimates will be present in the displacement, stress and strain field. In the present work, the variational formulation of the stochastic elliptic boundary value problem with random coefficients is studied in the light of the stochastic version of the Lax-Milgram lemma, and the propagation and quantification of uncertainty are investigated from the recent λ-Neumann Monte Carlo numerical methodology of asymptotic complexity. Numerical simulation results are obtained for the Levinson-Bickford stochastic beam bending problem. This high-order theory has the advantage of meeting the condition of zero shear at the lateral surfaces, and its formulation by the Finite Element method avoids the numerical drawback of shear locking. The solutions are presented over a set of numerical approximations through error estimates of the expected value and variance estimators of the displacement field. Different methods of quantification, uncertainty modeling, boundary conditions, coefficient of variation, and material and geometric properties of the beam are compared.porUniversidade Tecnológica Federal do ParanáCuritibaPrograma de Pós-Graduação em Engenharia Mecânica e de MateriaisUTFPRBrasilhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOSEngenharia MecânicaMonte Carlo, Método deProcesso estocásticoMétodo dos elementos finitosVigasDeformações e tensõesModelos matemáticosMétodos de SimulaçãoEstimativa de parâmetrosMonte Carlo methodStochastic processesFinite element methodGirdersGirdersMathematical modelsSimulation methodsParameter estimationQuantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte CarloQuantification of the uncertainty of the stochastic bending problem of a Levinson-Bickford beam using the λ-Neumann Monte Carlo methodologyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCuritibaSilva Junior, Claudio Roberto Avila dahttps://orcid.org/ 0000-0001-8662-9771http://lattes.cnpq.br/9248567058033141Silva Junior, Claudio Roberto Avila dahttps://orcid.org/ 0000-0001-8662-9771http://lattes.cnpq.br/9248567058033141Deus, Hilbeth Parente Azikri dehttps://orcid.org/0000-0002-5078-3635http://lattes.cnpq.br/8517234683984680Belo, Ivan Mourahttps://orcid.org/ 0000-0002-3266-8502http://lattes.cnpq.br/3205666335316946Silva Neto, Joao Morais dahttp://lattes.cnpq.br/3326147444101514Almeida, Julio Cezar dehttps://orcid.org/0000-0003-4164-8041http://lattes.cnpq.br/9982194093284947https://orcid.org/0000-0001-5956-3201http://lattes.cnpq.br/1000077717733917Squarcio, Roberto Mauro Felixreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81290http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/3/license.txtb9d82215ab23456fa2d8b49c5df1b95bMD53ORIGINALflexaoestocasticavigalevinson.pdfapplication/pdf7029302http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/1/flexaoestocasticavigalevinson.pdf15d63d7a32d25e8df97838b4b6a3258cMD51TEXTflexaoestocasticavigalevinson.pdf.txtflexaoestocasticavigalevinson.pdf.txtExtracted texttext/plain236250http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/4/flexaoestocasticavigalevinson.pdf.txtd97afd0f4ad22af9f7d22a8f73ec9866MD54THUMBNAILflexaoestocasticavigalevinson.pdf.jpgflexaoestocasticavigalevinson.pdf.jpgGenerated Thumbnailimage/jpeg1294http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/5/flexaoestocasticavigalevinson.pdf.jpg27a9b5e9f4aa35f130cc810017320632MD551/261772021-10-19 03:06:11.512oai:repositorio.utfpr.edu.br:1/26177TmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXbDqXMgZG8gUG9ydGFsIGRlIEluZm9ybWHDp8OjbyBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXTDoWxvZ29zIGRhcyBCaWJsaW90ZWNhcyAKZGVzdGEgSW5zdGl0dWnDp8Ojbywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpw6fDtWVzIGRlIGRpc3BvbmliaWxpemHDp8OjbyByZWdpc3RyYWRhcyBubyBpdGVtIDQgZG8gCuKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgVHJhYmFsaG9zIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28gZGUgR3JhZHVhw6fDo28gZSAKRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgZGUgSW5mb3JtYcOnw6NvIGUgbm9zIENhdMOhbG9nb3MgRWxldHLDtG5pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2HDp8OjbyBkYSBwcm9kdcOnw6NvIGNpZW50w61maWNhIGJyYXNpbGVpcmEuCgogIEFzIHZpYXMgb3JpZ2luYWlzIGUgYXNzaW5hZGFzIHBlbG8ocykgYXV0b3IoZXMpIGRvIOKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgClRyYWJhbGhvcyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWHDp8OjbyBlIG5vcyBDYXTDoWxvZ29zIEVsZXRyw7RuaWNvcyBkbyBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdIGUgZGEg4oCcRGVjbGFyYcOnw6NvIApkZSBBdXRvcmlh4oCdIGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQ8OibXB1cyBubyBxdWFsIG8gdHJhYmFsaG8gZm9pIGRlZmVuZGlkby4gCk5vIGNhc28gZGUgcHVibGljYcOnw7VlcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljw6JtcHVzLCBvcyBkb2N1bWVudG9zIGZpY2Fyw6NvIHNvYiBndWFyZGEgZGEgCkJpYmxpb3RlY2EgY29tIGEgcXVhbCBvIOKAnHByaW1laXJvIGF1dG9y4oCdIHBvc3N1YSB2w61uY3Vsby4KRepositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2021-10-19T06:06:11Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo
dc.title.alternative.pt_BR.fl_str_mv Quantification of the uncertainty of the stochastic bending problem of a Levinson-Bickford beam using the λ-Neumann Monte Carlo methodology
title Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo
spellingShingle Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo
Squarcio, Roberto Mauro Felix
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS
Monte Carlo, Método de
Processo estocástico
Método dos elementos finitos
Vigas
Deformações e tensões
Modelos matemáticos
Métodos de Simulação
Estimativa de parâmetros
Monte Carlo method
Stochastic processes
Finite element method
Girders
Girders
Mathematical models
Simulation methods
Parameter estimation
Engenharia Mecânica
title_short Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo
title_full Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo
title_fullStr Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo
title_full_unstemmed Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo
title_sort Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo
author Squarcio, Roberto Mauro Felix
author_facet Squarcio, Roberto Mauro Felix
author_role author
dc.contributor.advisor1.fl_str_mv Silva Junior, Claudio Roberto Avila da
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/ 0000-0001-8662-9771
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9248567058033141
dc.contributor.referee1.fl_str_mv Silva Junior, Claudio Roberto Avila da
dc.contributor.referee1ID.fl_str_mv https://orcid.org/ 0000-0001-8662-9771
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/9248567058033141
dc.contributor.referee2.fl_str_mv Deus, Hilbeth Parente Azikri de
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0002-5078-3635
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8517234683984680
dc.contributor.referee3.fl_str_mv Belo, Ivan Moura
dc.contributor.referee3ID.fl_str_mv https://orcid.org/ 0000-0002-3266-8502
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3205666335316946
dc.contributor.referee4.fl_str_mv Silva Neto, Joao Morais da
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/3326147444101514
dc.contributor.referee5.fl_str_mv Almeida, Julio Cezar de
dc.contributor.referee5ID.fl_str_mv https://orcid.org/0000-0003-4164-8041
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/9982194093284947
dc.contributor.authorID.fl_str_mv https://orcid.org/0000-0001-5956-3201
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1000077717733917
dc.contributor.author.fl_str_mv Squarcio, Roberto Mauro Felix
contributor_str_mv Silva Junior, Claudio Roberto Avila da
Silva Junior, Claudio Roberto Avila da
Deus, Hilbeth Parente Azikri de
Belo, Ivan Moura
Silva Neto, Joao Morais da
Almeida, Julio Cezar de
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS
topic CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS
Monte Carlo, Método de
Processo estocástico
Método dos elementos finitos
Vigas
Deformações e tensões
Modelos matemáticos
Métodos de Simulação
Estimativa de parâmetros
Monte Carlo method
Stochastic processes
Finite element method
Girders
Girders
Mathematical models
Simulation methods
Parameter estimation
Engenharia Mecânica
dc.subject.por.fl_str_mv Monte Carlo, Método de
Processo estocástico
Método dos elementos finitos
Vigas
Deformações e tensões
Modelos matemáticos
Métodos de Simulação
Estimativa de parâmetros
Monte Carlo method
Stochastic processes
Finite element method
Girders
Girders
Mathematical models
Simulation methods
Parameter estimation
dc.subject.capes.pt_BR.fl_str_mv Engenharia Mecânica
description Na mecânica estrutural estocástica, o tratamento da incerteza é frequentemente o principal objetivo das simulações numéricas utilizadas para estimar as respostas de um sistema ou fenômeno físico. Essas previsões podem formar a base para a tomada de decisões e, portanto, uma questão relevante a ser estudada é o quão confiável elas são. As incertezas, em geral, são avaliadas sob dois aspectos: a partir da informação estatística disponível e considerando o modelo matemático que representa o problema numericamente. O modelo identifica um conjunto de relações geralmente baseadas em princípios, leis de conservação e métricas de magnitude física. No caso do problema de flexão estocástica de viga é possível associar a aleatoriedade às propriedades do material, da geometria e as cargas atuantes sobre a estrutura e, desta forma as estimativas das respostas estarão presentes no campo de deslocamento, tensão e deformação. No presente trabalho, a formulação variacional do problema estocástico de valor de contorno elíptico com coeficientes aleatórios é estudada à luz da versão estocástica do lema de Lax-Milgram e a propagação e quantificação da incerteza são investigadas a partir da recente metodologia numérica de complexidade assintótica λ-Neumann Monte Carlo. Os resultados da simulação numérica são obtidos para o problema de flexão estocástica de viga de Levinson-Bickford. Esta teoria de alta ordem apresenta a vantagem de atender à condição de cisalhamento nulo nas superfícies laterais e sua formulação pelo método dos Elementos Finitos evita o inconveniente numérico de travamento (shear locking). As soluções são apresentadas sobre um conjunto de aproximações numéricas através de estimativas de erro dos estimadores de valor esperado e variância do campo de deslocamento. São comparados diferentes métodos de quantificação, modelagem da incerteza, condições de contorno, coeficiente de variação e propriedades material e geométrica da viga.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-10-18T21:19:31Z
dc.date.available.fl_str_mv 2021-10-18T21:19:31Z
dc.date.issued.fl_str_mv 2021-08-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SQUARCIO, Roberto Mauro Felix. Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo. 2021. Tese (Doutorado em Engenharia Mecânica e de Materiais) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/26177
identifier_str_mv SQUARCIO, Roberto Mauro Felix. Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo. 2021. Tese (Doutorado em Engenharia Mecânica e de Materiais) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021.
url http://repositorio.utfpr.edu.br/jspui/handle/1/26177
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Mecânica e de Materiais
dc.publisher.initials.fl_str_mv UTFPR
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/2/license_rdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/3/license.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/1/flexaoestocasticavigalevinson.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/4/flexaoestocasticavigalevinson.pdf.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/26177/5/flexaoestocasticavigalevinson.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
b9d82215ab23456fa2d8b49c5df1b95b
15d63d7a32d25e8df97838b4b6a3258c
d97afd0f4ad22af9f7d22a8f73ec9866
27a9b5e9f4aa35f130cc810017320632
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805923164686909440