Development and evaluation of an elderly fall detection system based on a wearable device located at wrist

Detalhes bibliográficos
Autor(a) principal: Quadros, Thiago de
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/2619
Resumo: A queda de idosos é um problema de saúde mundial. Todos os anos, cerca de 30% dos idosos com 65 anos ou mais são vítimas de quedas. Além disso, as consequências de uma queda podem ser fisiológicas (e.g. fraturas ósseas, ferimentos musculares) e psicológicas, como a perda de autoconfiança, levando a novas quedas. Uma solução para este problema está relacionada com ações preventivas (e.g. adaptação de mobília) aliadas a sistemas de detecção de quedas, os quais podem notificar familiares e serviços médicos de urgência. Como o tempo de espera por socorro após uma queda está relacionado com a severidade das consequências dela, esses sistemas devem oferecer elevada acurácia e detecção em tempo real. Embora existam várias soluções para isso na literatura (a maioria relacionada com dispositivos vestíveis), poucas delas estão relacionadas a dispositivos de punho, principalmente por causa dos desafios existentes para essa configuração. Considerando o punho como um local mais confortável, discreto e aceitável para uso de um dispositivo (menos associado com o estigma do uso de uma solução médica), este trabalho propõe o desenvolvimento e avaliação de uma solução baseada nessa configuração. Para isso, diferentes sensores (acelerômetro, giroscópio e magnetômetro) foram combinados com diferentes algoritmos, baseados em métodos de limiar e aprendizado de máquina, visando definir os melhores sinais e abordagem para a detecção de quedas. Esses métodos consideraram informações de aceleração, velocidade, deslocamento e orientação espacial, permitindo o cálculo de componentes verticais do movimento. Para o treino e avaliação dos algoritmos, dois protocolos diferentes foram empregados: um primeiro envolvendo 2 voluntários (homens, 27 e 31 anos) simulando um total de 80 sinais de queda e 80 de não-queda, e um segundo envolvendo 22 voluntários (14/8 homens/mulheres, idade média: 25,2 ± 4,7) simulando um total de 396 sinais de queda e 396 de não-queda. Uma análise exaustiva de diferentes sinais e parâmetros de configuração foi executada para cada método. O melhor algoritmo baseado em limiar considerou sinais de aceleração vertical e velocidade total, alcançando 95,8% de sensibilidade e 86,5% de especificidade. Por outro lado, o melhor algoritmo de aprendizagem de máquina foi o baseado no método K-Nearest Neighbors, considerando informações de aceleração, velocidade e deslocamento verticais combinadas com os ângulos de orientação espacial: 100% de sensibilidade e 97,9% de especificidade. Os resultados obtidos permitem enfatizar a relevância de algoritmos de aprendizagem de máquina para sistemas de detecção de queda vestíveis localizados no punho quando comparados a algoritmos baseados em limiar. Esta conclusão oferece grande contribuição para a pesquisa de detectores de quedas similares, sugerindo a melhor abordagem para novos desenvolvimentos.
id UTFPR-12_9290f2497ac2ddc27fbfca348f368599
oai_identifier_str oai:repositorio.utfpr.edu.br:1/2619
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2017-11-20T23:59:05Z2017-11-20T23:59:05Z2017-08-31QUADROS, Thiago de. Development and evaluation of an elderly fall detection system based on a wearable device located at wrist. 2017. 88 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2017.http://repositorio.utfpr.edu.br/jspui/handle/1/2619A queda de idosos é um problema de saúde mundial. Todos os anos, cerca de 30% dos idosos com 65 anos ou mais são vítimas de quedas. Além disso, as consequências de uma queda podem ser fisiológicas (e.g. fraturas ósseas, ferimentos musculares) e psicológicas, como a perda de autoconfiança, levando a novas quedas. Uma solução para este problema está relacionada com ações preventivas (e.g. adaptação de mobília) aliadas a sistemas de detecção de quedas, os quais podem notificar familiares e serviços médicos de urgência. Como o tempo de espera por socorro após uma queda está relacionado com a severidade das consequências dela, esses sistemas devem oferecer elevada acurácia e detecção em tempo real. Embora existam várias soluções para isso na literatura (a maioria relacionada com dispositivos vestíveis), poucas delas estão relacionadas a dispositivos de punho, principalmente por causa dos desafios existentes para essa configuração. Considerando o punho como um local mais confortável, discreto e aceitável para uso de um dispositivo (menos associado com o estigma do uso de uma solução médica), este trabalho propõe o desenvolvimento e avaliação de uma solução baseada nessa configuração. Para isso, diferentes sensores (acelerômetro, giroscópio e magnetômetro) foram combinados com diferentes algoritmos, baseados em métodos de limiar e aprendizado de máquina, visando definir os melhores sinais e abordagem para a detecção de quedas. Esses métodos consideraram informações de aceleração, velocidade, deslocamento e orientação espacial, permitindo o cálculo de componentes verticais do movimento. Para o treino e avaliação dos algoritmos, dois protocolos diferentes foram empregados: um primeiro envolvendo 2 voluntários (homens, 27 e 31 anos) simulando um total de 80 sinais de queda e 80 de não-queda, e um segundo envolvendo 22 voluntários (14/8 homens/mulheres, idade média: 25,2 ± 4,7) simulando um total de 396 sinais de queda e 396 de não-queda. Uma análise exaustiva de diferentes sinais e parâmetros de configuração foi executada para cada método. O melhor algoritmo baseado em limiar considerou sinais de aceleração vertical e velocidade total, alcançando 95,8% de sensibilidade e 86,5% de especificidade. Por outro lado, o melhor algoritmo de aprendizagem de máquina foi o baseado no método K-Nearest Neighbors, considerando informações de aceleração, velocidade e deslocamento verticais combinadas com os ângulos de orientação espacial: 100% de sensibilidade e 97,9% de especificidade. Os resultados obtidos permitem enfatizar a relevância de algoritmos de aprendizagem de máquina para sistemas de detecção de queda vestíveis localizados no punho quando comparados a algoritmos baseados em limiar. Esta conclusão oferece grande contribuição para a pesquisa de detectores de quedas similares, sugerindo a melhor abordagem para novos desenvolvimentos.Falls in the elderly age are a world health problem. Every year, about 30% of people aged 65 or older become victims of fall events. The consequences of a fall may be physiological (e.g. bone fractures, muscular injuries) and psychological, including the loss of self-confidence by fear of falling, which leads to new falls. A solution to this problem is related to preventive actions (e.g. adapting furniture) allied to fall detection systems, which can alert family members and emergency medical services. Since the response time for help is related to the fall's consequences and severity, such systems must offer high accuracy and real-time fall detection. Although there are many fall detection solutions in literature (most part of them related to wearable devices), few of them are related to wrist-worn devices, mainly because of the existing challenges for this configuration. Considering the wrist as a comfortable, discrete and acceptable place for an elderly wearable device (less associated to the stigma of using a medical device), this work proposes the development and evaluation of a fall detection solution based on this configuration. For this, different sensors (accelerometer, gyroscope and magnetometer) were combined to different algorithms, based on threshold and machine learning methods, in order to define the best signals and approach for an elderly fall detection. These methods considered acceleration, velocity and displacement information, relating them with wrist spatial orientation, allowing the calculation of the vertical components of each movement. For the algorithms' training and evaluation, two different protocols were employed: one involving 2 volunteers (both males, ages of 27 and 31) performing a total of 80 fall and 80 non-fall events simulation, and the other involving 22 volunteers (14/8 males/females, ages mean: 25.2 ± 4.7) performing a total of 396 fall and 396 non-fall events simulation. An exhaustive evaluation of different signals and configuration parameters was performed for each method. The best threshold-based algorithm employed the vertical acceleration and total velocity signals, achieving 95.8% and 86.5% of sensitivity and specificity, respectively. On the other hand, the best machine learning algorithm was based on the K-Nearest Neighbors method employing the vertical acceleration, velocity and displacement information combined with spatial orientation angles: 100% of sensitivity and 97.9% of specificity. The obtained results allow to emphasize the relevance of machine learning algorithms for wrist-worn fall detection systems instead of traditional threshold-based algorithms. These results offer great contributions for the research of similar wearable fall detectors, suggesting the best approach for new developments.engUniversidade Tecnológica Federal do ParanáCuritibaPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPRBrasilCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::ENGENHARIA MEDICA::TRANSDUTORES PARA APLICACOES BIOMEDICASEngenharia ElétricaQuedas (Acidentes) em idososAprendizado do computadorProcessamento de sinais - Técnicas digitaisAlgorítmos computacionaisProcessamento eletrônico de dados em tempo realMétodos de simulaçãoInstrumentos e aparelhos médicosEngenharia biomédicaEngenharia elétricaFalls (Accidents) in old ageMachine learningSignal processing - Digital techniqueComputer algorithmsReal-time data processingSimulation methodsMedical instruments and apparatusBiomedical engineeringElectric engineeringDevelopment and evaluation of an elderly fall detection system based on a wearable device located at wristDesenvolvimento e avaliação de um sistema de detecção de quedas de idosos baseado em um dispositivo vestível localizado no punhoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisCuritibaSchneider, Fábio Kurthttp://lattes.cnpq.br/1463591813823167Lazzaretti, André Eugêniohttp://lattes.cnpq.br/7649611874688878Maia, Joaquim MiguelLazzaretti , André EugênioRiella, Rodrigo Jardimhttp://lattes.cnpq.br/4297376266962706Quadros, Thiago deinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRORIGINALCT_CPGEI_M_Quadro, Thiago de_2017.pdfCT_CPGEI_M_Quadro, Thiago de_2017.pdfapplication/pdf1539113http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2619/1/CT_CPGEI_M_Quadro%2c%20Thiago%20de_2017.pdf58b6d6e4b7f7fcd328627418207cc60bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2619/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCT_CPGEI_M_Quadro, Thiago de_2017.pdf.txtCT_CPGEI_M_Quadro, Thiago de_2017.pdf.txtExtracted texttext/plain193652http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2619/3/CT_CPGEI_M_Quadro%2c%20Thiago%20de_2017.pdf.txtb83d5c472c600b1e8a6cea72438008e5MD53THUMBNAILCT_CPGEI_M_Quadro, Thiago de_2017.pdf.jpgCT_CPGEI_M_Quadro, Thiago de_2017.pdf.jpgGenerated Thumbnailimage/jpeg1263http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2619/4/CT_CPGEI_M_Quadro%2c%20Thiago%20de_2017.pdf.jpg7c8b12a4faf473bf33ceb42fe865ce99MD541/26192017-11-20 21:59:05.553oai:repositorio.utfpr.edu.br:1/2619Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2017-11-20T23:59:05Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv Development and evaluation of an elderly fall detection system based on a wearable device located at wrist
dc.title.alternative.pt_BR.fl_str_mv Desenvolvimento e avaliação de um sistema de detecção de quedas de idosos baseado em um dispositivo vestível localizado no punho
title Development and evaluation of an elderly fall detection system based on a wearable device located at wrist
spellingShingle Development and evaluation of an elderly fall detection system based on a wearable device located at wrist
Quadros, Thiago de
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::ENGENHARIA MEDICA::TRANSDUTORES PARA APLICACOES BIOMEDICAS
Quedas (Acidentes) em idosos
Aprendizado do computador
Processamento de sinais - Técnicas digitais
Algorítmos computacionais
Processamento eletrônico de dados em tempo real
Métodos de simulação
Instrumentos e aparelhos médicos
Engenharia biomédica
Engenharia elétrica
Falls (Accidents) in old age
Machine learning
Signal processing - Digital technique
Computer algorithms
Real-time data processing
Simulation methods
Medical instruments and apparatus
Biomedical engineering
Electric engineering
Engenharia Elétrica
title_short Development and evaluation of an elderly fall detection system based on a wearable device located at wrist
title_full Development and evaluation of an elderly fall detection system based on a wearable device located at wrist
title_fullStr Development and evaluation of an elderly fall detection system based on a wearable device located at wrist
title_full_unstemmed Development and evaluation of an elderly fall detection system based on a wearable device located at wrist
title_sort Development and evaluation of an elderly fall detection system based on a wearable device located at wrist
author Quadros, Thiago de
author_facet Quadros, Thiago de
author_role author
dc.contributor.advisor1.fl_str_mv Schneider, Fábio Kurt
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1463591813823167
dc.contributor.advisor-co1.fl_str_mv Lazzaretti, André Eugênio
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/7649611874688878
dc.contributor.referee1.fl_str_mv Maia, Joaquim Miguel
dc.contributor.referee2.fl_str_mv Lazzaretti , André Eugênio
dc.contributor.referee3.fl_str_mv Riella, Rodrigo Jardim
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4297376266962706
dc.contributor.author.fl_str_mv Quadros, Thiago de
contributor_str_mv Schneider, Fábio Kurt
Lazzaretti, André Eugênio
Maia, Joaquim Miguel
Lazzaretti , André Eugênio
Riella, Rodrigo Jardim
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::ENGENHARIA MEDICA::TRANSDUTORES PARA APLICACOES BIOMEDICAS
topic CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::ENGENHARIA MEDICA::TRANSDUTORES PARA APLICACOES BIOMEDICAS
Quedas (Acidentes) em idosos
Aprendizado do computador
Processamento de sinais - Técnicas digitais
Algorítmos computacionais
Processamento eletrônico de dados em tempo real
Métodos de simulação
Instrumentos e aparelhos médicos
Engenharia biomédica
Engenharia elétrica
Falls (Accidents) in old age
Machine learning
Signal processing - Digital technique
Computer algorithms
Real-time data processing
Simulation methods
Medical instruments and apparatus
Biomedical engineering
Electric engineering
Engenharia Elétrica
dc.subject.por.fl_str_mv Quedas (Acidentes) em idosos
Aprendizado do computador
Processamento de sinais - Técnicas digitais
Algorítmos computacionais
Processamento eletrônico de dados em tempo real
Métodos de simulação
Instrumentos e aparelhos médicos
Engenharia biomédica
Engenharia elétrica
Falls (Accidents) in old age
Machine learning
Signal processing - Digital technique
Computer algorithms
Real-time data processing
Simulation methods
Medical instruments and apparatus
Biomedical engineering
Electric engineering
dc.subject.capes.pt_BR.fl_str_mv Engenharia Elétrica
description A queda de idosos é um problema de saúde mundial. Todos os anos, cerca de 30% dos idosos com 65 anos ou mais são vítimas de quedas. Além disso, as consequências de uma queda podem ser fisiológicas (e.g. fraturas ósseas, ferimentos musculares) e psicológicas, como a perda de autoconfiança, levando a novas quedas. Uma solução para este problema está relacionada com ações preventivas (e.g. adaptação de mobília) aliadas a sistemas de detecção de quedas, os quais podem notificar familiares e serviços médicos de urgência. Como o tempo de espera por socorro após uma queda está relacionado com a severidade das consequências dela, esses sistemas devem oferecer elevada acurácia e detecção em tempo real. Embora existam várias soluções para isso na literatura (a maioria relacionada com dispositivos vestíveis), poucas delas estão relacionadas a dispositivos de punho, principalmente por causa dos desafios existentes para essa configuração. Considerando o punho como um local mais confortável, discreto e aceitável para uso de um dispositivo (menos associado com o estigma do uso de uma solução médica), este trabalho propõe o desenvolvimento e avaliação de uma solução baseada nessa configuração. Para isso, diferentes sensores (acelerômetro, giroscópio e magnetômetro) foram combinados com diferentes algoritmos, baseados em métodos de limiar e aprendizado de máquina, visando definir os melhores sinais e abordagem para a detecção de quedas. Esses métodos consideraram informações de aceleração, velocidade, deslocamento e orientação espacial, permitindo o cálculo de componentes verticais do movimento. Para o treino e avaliação dos algoritmos, dois protocolos diferentes foram empregados: um primeiro envolvendo 2 voluntários (homens, 27 e 31 anos) simulando um total de 80 sinais de queda e 80 de não-queda, e um segundo envolvendo 22 voluntários (14/8 homens/mulheres, idade média: 25,2 ± 4,7) simulando um total de 396 sinais de queda e 396 de não-queda. Uma análise exaustiva de diferentes sinais e parâmetros de configuração foi executada para cada método. O melhor algoritmo baseado em limiar considerou sinais de aceleração vertical e velocidade total, alcançando 95,8% de sensibilidade e 86,5% de especificidade. Por outro lado, o melhor algoritmo de aprendizagem de máquina foi o baseado no método K-Nearest Neighbors, considerando informações de aceleração, velocidade e deslocamento verticais combinadas com os ângulos de orientação espacial: 100% de sensibilidade e 97,9% de especificidade. Os resultados obtidos permitem enfatizar a relevância de algoritmos de aprendizagem de máquina para sistemas de detecção de queda vestíveis localizados no punho quando comparados a algoritmos baseados em limiar. Esta conclusão oferece grande contribuição para a pesquisa de detectores de quedas similares, sugerindo a melhor abordagem para novos desenvolvimentos.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-11-20T23:59:05Z
dc.date.available.fl_str_mv 2017-11-20T23:59:05Z
dc.date.issued.fl_str_mv 2017-08-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv QUADROS, Thiago de. Development and evaluation of an elderly fall detection system based on a wearable device located at wrist. 2017. 88 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/2619
identifier_str_mv QUADROS, Thiago de. Development and evaluation of an elderly fall detection system based on a wearable device located at wrist. 2017. 88 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2017.
url http://repositorio.utfpr.edu.br/jspui/handle/1/2619
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
dc.publisher.initials.fl_str_mv UTFPR
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2619/1/CT_CPGEI_M_Quadro%2c%20Thiago%20de_2017.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2619/2/license.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2619/3/CT_CPGEI_M_Quadro%2c%20Thiago%20de_2017.pdf.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2619/4/CT_CPGEI_M_Quadro%2c%20Thiago%20de_2017.pdf.jpg
bitstream.checksum.fl_str_mv 58b6d6e4b7f7fcd328627418207cc60b
8a4605be74aa9ea9d79846c1fba20a33
b83d5c472c600b1e8a6cea72438008e5
7c8b12a4faf473bf33ceb42fe865ce99
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805923065452822528