Competence mapping based on cluster analysis

Detalhes bibliográficos
Autor(a) principal: Sérgio, Marina Carradore
Data de Publicação: 2016
Outros Autores: Gonçalves, Alexandre Leopoldo, Souza, João Artur de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Tecnologia e Sociedade (Online)
Texto Completo: https://periodicos.utfpr.edu.br/rts/article/view/3148
Resumo: In the knowledge society, intellectual capital has become a major intangible business assets. The integration of knowledge, skills and attitudes intrinsic to the individual reflected in the performance of employees in the organizational environment, directly influencing the success of the business and the maintenance of organizational competitiveness. By aligning the competences of employees with the organization's objectives, greater productivity can be achieved. The objective of this paper is to present a model to assist in management competence, using technique based on cluster analysis, aiming to map and describe the competences, as well as identify and manage the professional profiles of employees. With the help of existing technologies can be applied techniques for extracting knowledge and the correct management of it, enhancing it into a source of competitive advantage, able to highlight trends and assist in the decision-making process. The methodological procedures involved a systematic literature review and the development of a scenario by collecting 39 curriculums of the post graduate of Engineering professors and Knowledge Management from the Federal University of Santa Catarina, obtained from the Lattes Platform. Through the scenario, we were possible to evaluate and verify that the model has the ability to achieve consistent and satisfactory results in the understanding of a particular domain from unstructured information sources.
id UTFPR-6_60a2ed90ad67c6b750f24d25808a56e8
oai_identifier_str oai:periodicos.utfpr:article/3148
network_acronym_str UTFPR-6
network_name_str Revista Tecnologia e Sociedade (Online)
repository_id_str
spelling Competence mapping based on cluster analysisMapeamento de competências baseado em análise de agrupamentosIn the knowledge society, intellectual capital has become a major intangible business assets. The integration of knowledge, skills and attitudes intrinsic to the individual reflected in the performance of employees in the organizational environment, directly influencing the success of the business and the maintenance of organizational competitiveness. By aligning the competences of employees with the organization's objectives, greater productivity can be achieved. The objective of this paper is to present a model to assist in management competence, using technique based on cluster analysis, aiming to map and describe the competences, as well as identify and manage the professional profiles of employees. With the help of existing technologies can be applied techniques for extracting knowledge and the correct management of it, enhancing it into a source of competitive advantage, able to highlight trends and assist in the decision-making process. The methodological procedures involved a systematic literature review and the development of a scenario by collecting 39 curriculums of the post graduate of Engineering professors and Knowledge Management from the Federal University of Santa Catarina, obtained from the Lattes Platform. Through the scenario, we were possible to evaluate and verify that the model has the ability to achieve consistent and satisfactory results in the understanding of a particular domain from unstructured information sources.Na sociedade do conhecimento, o capital intelectual tornou-se um dos principais ativos empresariais intangíveis. A integração do conhecimento, das habilidades e atitudes intrínsecas ao indivíduo reflete no desempenho dos colaboradores no ambiente organizacional, influenciando diretamente no sucesso dos negócios e na manutenção da competitividade organizacional. Ao alinhar as competências dos colaboradores com os objetivos da organização, uma produtividade maior pode ser obtida. O objetivo deste trabalho é apresentar um modelo para auxiliar na gestão por competências, utilizando a técnica de análise de agrupamento, visando mapear e descrever as competências, bem como identificar e gerir os perfis profissionais dos colaboradores. Com o auxílio das tecnologias existentes é possível aplicar técnicas para a extração de conhecimento e para a correta gestão do mesmo, potencializando-o em uma fonte de vantagem competitiva, capaz de evidenciar tendências e auxiliar no processo de tomada de decisão. Os procedimentos metodológicos envolveram uma revisão sistemática da literatura e a elaboração de um cenário com a coleta de 39 currículos de professores de um curso de Pós-graduação da Universidade Federal de Santa Catarina, obtidos através da Plataforma Lattes. Por meio do cenário, foi possível avaliar e verificar que o modelo possui a capacidade de atingir resultados consistentes e satisfatórios no âmbito do entendimento de determinado domínio a partir de fontes de informação não estruturadas.Universidade Tecnológica Federal do Paraná (UTFPR)Sérgio, Marina CarradoreGonçalves, Alexandre LeopoldoSouza, João Artur de2016-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.utfpr.edu.br/rts/article/view/314810.3895/rts.v12n24.3148Revista Tecnologia e Sociedade; v. 12, n. 24 (2016)Revista Tecnologia e Sociedade; v. 12, n. 24 (2016)1984-35261809-004410.3895/rts.v12n24reponame:Revista Tecnologia e Sociedade (Online)instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRporhttps://periodicos.utfpr.edu.br/rts/article/view/3148/2632Direitos autorais 2016 CC-BYhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2016-09-23T14:47:13Zoai:periodicos.utfpr:article/3148Revistahttps://periodicos.ifrs.edu.br/index.php/tearPUBhttps://periodicos.utfpr.edu.br/rts/oai||rts-ct@utfpr.edu.br1984-35261809-0044opendoar:2016-09-23T14:47:13Revista Tecnologia e Sociedade (Online) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Competence mapping based on cluster analysis
Mapeamento de competências baseado em análise de agrupamentos
title Competence mapping based on cluster analysis
spellingShingle Competence mapping based on cluster analysis
Sérgio, Marina Carradore
title_short Competence mapping based on cluster analysis
title_full Competence mapping based on cluster analysis
title_fullStr Competence mapping based on cluster analysis
title_full_unstemmed Competence mapping based on cluster analysis
title_sort Competence mapping based on cluster analysis
author Sérgio, Marina Carradore
author_facet Sérgio, Marina Carradore
Gonçalves, Alexandre Leopoldo
Souza, João Artur de
author_role author
author2 Gonçalves, Alexandre Leopoldo
Souza, João Artur de
author2_role author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Sérgio, Marina Carradore
Gonçalves, Alexandre Leopoldo
Souza, João Artur de
description In the knowledge society, intellectual capital has become a major intangible business assets. The integration of knowledge, skills and attitudes intrinsic to the individual reflected in the performance of employees in the organizational environment, directly influencing the success of the business and the maintenance of organizational competitiveness. By aligning the competences of employees with the organization's objectives, greater productivity can be achieved. The objective of this paper is to present a model to assist in management competence, using technique based on cluster analysis, aiming to map and describe the competences, as well as identify and manage the professional profiles of employees. With the help of existing technologies can be applied techniques for extracting knowledge and the correct management of it, enhancing it into a source of competitive advantage, able to highlight trends and assist in the decision-making process. The methodological procedures involved a systematic literature review and the development of a scenario by collecting 39 curriculums of the post graduate of Engineering professors and Knowledge Management from the Federal University of Santa Catarina, obtained from the Lattes Platform. Through the scenario, we were possible to evaluate and verify that the model has the ability to achieve consistent and satisfactory results in the understanding of a particular domain from unstructured information sources.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-01
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.utfpr.edu.br/rts/article/view/3148
10.3895/rts.v12n24.3148
url https://periodicos.utfpr.edu.br/rts/article/view/3148
identifier_str_mv 10.3895/rts.v12n24.3148
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.utfpr.edu.br/rts/article/view/3148/2632
dc.rights.driver.fl_str_mv Direitos autorais 2016 CC-BY
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2016 CC-BY
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná (UTFPR)
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná (UTFPR)
dc.source.none.fl_str_mv Revista Tecnologia e Sociedade; v. 12, n. 24 (2016)
Revista Tecnologia e Sociedade; v. 12, n. 24 (2016)
1984-3526
1809-0044
10.3895/rts.v12n24
reponame:Revista Tecnologia e Sociedade (Online)
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Revista Tecnologia e Sociedade (Online)
collection Revista Tecnologia e Sociedade (Online)
repository.name.fl_str_mv Revista Tecnologia e Sociedade (Online) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv ||rts-ct@utfpr.edu.br
_version_ 1800223876649582592