Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) |
Texto Completo: | http://hdl.handle.net/10737/2863 |
Resumo: | O uso de Inteligência Artificial (IA) para resolução de problemas complexos vem ganhando força no mundo inteiro. Técnicas baseadas em IA estão sendo amplamente adotadas no reconhecimento de imagens, de fala e de processamento de linguagem natural em diferentes áreas. A área da saúde está aderindo cada vez mais a Inteligência Artificial para diagnóstico e classificação de doenças, tendo como exemplo a doença de glaucoma, que pode ser detectada tanto por meio do processamento automatizado de grandes conjuntos de dados, quanto pela detecção precoce de novos padrões de doenças. Além disso, a IA promete mudar fundamentalmente as pesquisas que visam entender o desenvolvimento, a progressão e o tratamento do glaucoma, identificando novos fatores de risco e avaliando a importância dos existentes. Diante disso, o objetivo do presente trabalho foi verificar se a Rede Neural Artificial (RNA) de arquitetura U-Net é capaz de realizar a segmentação do disco óptico e a segmentação da escavação a partir de imagens de fundo de olho da base de imagens RIM-ONE, servindo de apoio aos profissionais na detecção do glaucoma. Como resultado, foi obtido um F1-score médio de 0,9440 para a segmentação do disco óptico e um F1-score médio de 0,8350 para a segmentação da escavação, comprovando que a rede neural U-Net é capaz de realizar a segmentação com boas métricas. |
id |
UVAT_daa3dab7cc9d6b6b75e6bc8e0a809b8a |
---|---|
oai_identifier_str |
oai:univates.br:10737/2863 |
network_acronym_str |
UVAT |
network_name_str |
Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) |
repository_id_str |
1 |
spelling |
Franzen, Evandrohttp://lattes.cnpq.br/7342971270440310Caron, Eduardo2020-10-28T00:15:23Z2020-10-28T00:15:23Z2020-062020-07-14O uso de Inteligência Artificial (IA) para resolução de problemas complexos vem ganhando força no mundo inteiro. Técnicas baseadas em IA estão sendo amplamente adotadas no reconhecimento de imagens, de fala e de processamento de linguagem natural em diferentes áreas. A área da saúde está aderindo cada vez mais a Inteligência Artificial para diagnóstico e classificação de doenças, tendo como exemplo a doença de glaucoma, que pode ser detectada tanto por meio do processamento automatizado de grandes conjuntos de dados, quanto pela detecção precoce de novos padrões de doenças. Além disso, a IA promete mudar fundamentalmente as pesquisas que visam entender o desenvolvimento, a progressão e o tratamento do glaucoma, identificando novos fatores de risco e avaliando a importância dos existentes. Diante disso, o objetivo do presente trabalho foi verificar se a Rede Neural Artificial (RNA) de arquitetura U-Net é capaz de realizar a segmentação do disco óptico e a segmentação da escavação a partir de imagens de fundo de olho da base de imagens RIM-ONE, servindo de apoio aos profissionais na detecção do glaucoma. Como resultado, foi obtido um F1-score médio de 0,9440 para a segmentação do disco óptico e um F1-score médio de 0,8350 para a segmentação da escavação, comprovando que a rede neural U-Net é capaz de realizar a segmentação com boas métricas.The use of Artificial Intelligence (AI) to solve complex tasks has been gaining force all over the world. AI-based techniques are being widely adopted in image recognition, speech recognition and natural language processing in different areas. The health area is increasingly adhering to Artificial Intelligence for diagnosis and classification of diseases, with the example of the glaucoma disease, which can be detected either through the automated processing of large datasets, or by the early detection of new patterns of diseases. In addition, AI promises to fundamentally change the research aimed at understanding the development, progression and treatment of glaucoma, identifying new risk factors and assessing the importance of existing ones. Therefore, the objective of the present work was to verify if the Artificial Neural Network (ANN) using the U-Net architecture is able to perform optic disk segmentation and optic cup segmentation on fundus images of the RIM-ONE image dataset, supporting professionals in the detection of glaucoma. As a result, an average F1-score of 0.9440 was obtained for the optic disk segmentation and an average F1-score of 0.8350 for the optic cup segmentation, proving that the U-Net neural network is capable of performing segmentation with good metrics.-1CARON, Eduardo. Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma. 2020. Monografia (Graduação em Engenharia de Software) – Universidade do Vale do Taquari - Univates, Lajeado, 14 jul. 2020. Disponível em: http://hdl.handle.net/10737/2863. http://hdl.handle.net/10737/2863http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessENGGlaucomaInteligência ArtificialRede Neural ArtificialU-NetArtificial IntelligenceArtificial Neural NetworkImage segmentationSegmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucomainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisporreponame:Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD)instname:Centro Universitário Univates (UNIVATES)instacron:UNIVATESORIGINAL2020EduardoCaron.pdf2020EduardoCaron.pdfapplication/pdf2191363https://www.univates.br/bdu/bitstreams/1e29b17c-e7dc-4405-8e7f-ecb389af85c6/download3d17039e161401af8829401d388f2126MD51CC-LICENSElicense_urllicense_urltext/plain49https://www.univates.br/bdu/bitstreams/67643579-6ede-480a-9c82-dc9077448349/download924993ce0b3ba389f79f32a1b2735415MD52license_textlicense_texttext/html; charset=utf-80https://www.univates.br/bdu/bitstreams/566f983c-8f58-43f5-9e12-04f64c3e0974/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://www.univates.br/bdu/bitstreams/844c0774-8870-4821-aa5b-88ab4d6a7a08/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain4614https://www.univates.br/bdu/bitstreams/e39bcfa8-3e87-4c3b-855d-c048740b4231/downloadbbc55c3abe017903add4e31d38590e6aMD55TEXT2020EduardoCaron.pdf.txt2020EduardoCaron.pdf.txtExtracted texttext/plain103105https://www.univates.br/bdu/bitstreams/e8661cc8-eb17-48f6-9101-45751d13115b/downloadf30682177522500e80d1cb1e25ddb093MD510THUMBNAIL2020EduardoCaron.pdf.jpg2020EduardoCaron.pdf.jpgGenerated Thumbnailimage/jpeg4248https://www.univates.br/bdu/bitstreams/200bed13-08d6-4675-a315-5bcbb849656f/downloada50532b5ad218cd7c7d431834fe866f7MD51110737/28632023-06-23 09:45:51.707http://creativecommons.org/licenses/by-nc-sa/4.0/openAccessoai:univates.br:10737/2863https://www.univates.br/bduRepositório InstitucionalPRIhttp://www.univates.br/bdu_oai/requestopendoar:12023-06-23T09:45:51Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) - Centro Universitário Univates (UNIVATES)falseVEVSTU8gREUgREVQw5NTSVRPIC0gQklCTElPVEVDQSBESUdJVEFMIERBIFVOSVZBVEVTIChCRFUpCgpOb21lIGRvIGRlcG9zaXRhbnRlOiBESEFSQSBDQVJMRVNTTyBaQU1QSVZBCkUtbWFpbCBkbyBkZXBvc2l0YW50ZTogZGhhcmEuemFtcGl2YUB1bml2YXRlcy5icgpEYXRhOiBUaHUgT2N0IDE1IDIwOjI2OjUyIEJSVCAyMDIwCkNvbGXDp8OjbzogRW5nZW5oYXJpYSBkZSBTb2Z0d2FyZQpPYnJhOiBTZWdtZW50YcOnw6NvIGRvIGRpc2NvIMOzcHRpY28gZSBlc2NhdmHDp8OjbyBjb20gbyB1c28gZGUgcmVkZXMgbmV1cmFpcyBwYXJhIGF1eMOtbGlvIMOgIGRldGVjw6fDo28gZGUgZ2xhdWNvbWEKQXV0b3I6IGRoYXJhLnphbXBpdmFAdW5pdmF0ZXMuYnIKCkNvbW8gY29sYWJvcmFkb3IgbmEgc3VibWlzc8OjbyBkYSBvYnJhLCBvIGRlcG9zaXRhbnRlIERIQVJBIENBUkxFU1NPIFpBTVBJVkEgCmRlY2xhcmEgbyByZWNlYmltZW50byBkbyBURVJNTyBERSBMSUNFTsOHQSBkYSBCSUJMSU9URUNBIERJR0lUQUwgREEgVU5JVkFURVMKKEJEVSkgcHJlZW5jaGlkbyBlIGFzc2luYWRvIHBlbG8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgCmRhIG9icmEsIGUgYWZpcm1hIGVzdGFyIHNlbmRvIGZpZGVkaWdubyBhb3MgZGFkb3MgaW5mb3JtYWRvcyBubyBtZXNtby4gCgpPIHRlcm1vIGRlIGxpY2Vuw6dhLCBjb21vIHNlZ3VlIGFiYWl4bywgZm9pIGRlZmluaWRvIHBlbGEgQXNzZXNzb3JpYSAKSnVyw61kaWNhIGRvIENlbnRybyBVbml2ZXJzaXTDoXJpbyBVbml2YXRlczoKCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQpURVJNTyBERSBMSUNFTsOHQSAtIEJJQkxJT1RFQ0EgRElHSVRBTCBEQSBVTklWQVRFUyAoQkRVKQoKQ3Vyc28vUHJvZ3JhbWFfX19fX19fX19fX19fX19HcmF1IEFjYWTDqm1pY29fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KTmF0dXJlemEgZGEgT2JyYSAoKVRDQyAoKUFydGlnbyAoKUxpdnJvICgpQ2Fww610dWxvIGRlIExpdnJvICgpT3V0cm9fX19fX19fX18KVMOtdHVsbyBkYSBPYnJhX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCkRlZmVzYS9QdWJsaWNhw6fDo29fX19fX19fX19fX19BcnF1aXZvcyBhbmV4b3NfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpFbWJhcmdhZG8gYXTDqV9fX19fX19fX19fX19fX19Nb3Rpdm9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpFdmVudG8vUGVyacOzZGljb19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwrDk3Jnw6NvIGRlIEZvbWVudG9fX19fX19fX19fX19fSWRlbnRpZmljYWRvcl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KQ8OzZC4gSWRlbnRpZmljYWRvcl9fX19fX19fX19fUmVjZWJpbWVudG9fX19fX19fX19EaXNwb27DrXZlbCBuYSBCRFVfX19fX19fX19fCgoxLiBPIEFVVE9SIGRlY2xhcmEgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIE9CUkEgZSB0ZW0gcGxlbmEgCmRpc3BvbmliaWxpZGFkZSBkb3MgbWVzbW9zLCBleGltaW5kbyBhIFVOSVZBVEVTIGRlIHRvZGEgZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlLgoKMi4gTyBBVVRPUiBkZWNsYXJhIHF1ZSwgcmVsYXRpdmFtZW50ZSDDoCBPQlJBLCByZXNwZWl0b3Ugb3MgZGlyZWl0b3MgaW50ZWxlY3R1YWlzIApkZSB0ZXJjZWlyb3MgZSBjdW1wcml1IGNvbSBhcyBvYnJpZ2HDp8O1ZXMgbGVnYWlzIG91IGNvbnRyYXR1YWlzIGNvcnJlbGF0YXMsIApleGltaW5kbyBhIFVOSVZBVEVTIGRlIHRvZGEgZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlLgoKMy4gTyBBVVRPUiBsaWNlbmNpYSBhIHJlcHJvZHXDp8OjbyBncmF0dWl0YSBlbSBmb3JtYXRvIGRpZ2l0YWwgZSBhIGRpc3BvbmliaWxpemHDp8OjbyAKZ3JhdHVpdGEgb3Ugb25lcm9zYSBkYSBPQlJBIG5hIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSBVbml2YXRlcywgcGFyYSB0b2RvcyBvcyAKdXN1w6FyaW9zLCBuYSBmb3JtYSBkZWZpbmlkYSBwZWxhIFVOSVZBVEVTLCBjaWVudGUgZGUgcXVlIGEgaW5jbHVzw6NvIGRhIE9CUkEgCm5hIEJpYmxpb3RlY2EgaW1wb3J0YXLDoSB0YW1iw6ltIG5vIGxpY2VuY2lhbWVudG8gcG9yIG1laW8gZGEgQ3JlYXRpdmUgQ29tbW9ucy4KCjQuIEEgVU5JVkFURVMgbmFkYSBkZXZlcsOhIGFvIEFVVE9SIHBlbGEgcmVwcm9kdcOnw6NvIGUgZGlzcG9uaWJpbGl6YcOnw6NvIGRhIE9CUkEsIApjb25mb3JtZSBhY2ltYSBwcmV2aXN0bywgbWVzbW8gc2UgbyBhY2Vzc28gZG9zIHVzdcOhcmlvcyBkYSBCaWJsaW90ZWNhIERpZ2l0YWwgCmRhIFVuaXZhdGVzIGZvciBhIHTDrXR1bG8gb25lcm9zby4KCjUuIE8gQVVUT1IgZmljYSBjaWVudGUgZGUgcXVlLCBkaXNwb25pYmlsaXphZGEgYSBPQlJBIG5hIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSAKVW5pdmF0ZXMsIG9zIHVzdcOhcmlvcyBwb2RlcsOjbyB1dGlsaXrDoS1sYSBjb25mb3JtZSBhcyBub3JtYXMgZGEgQ3JlYXRpdmUgQ29tbW9ucy4KCjYuIE8gQVVUT1IqOgpQZXJtaXRlIG8gdXNvIGNvbWVyY2lhbCBkYSBzdWEgT0JSQT8qIChGb250ZTogaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvY2hvb3NlLykgCihNYXJjYXIgYXBlbmFzIHVtYSBvcMOnw6NvKQooICkgU2ltIChPIGxpY2VuY2lhZG9yIHBlcm1pdGUgYSBvdXRyb3MgY29waWFyLCBkaXN0cmlidWlyLCBleGliaXIgZSBleGVjdXRhciBhIApPQlJBLCBpbmNsdXNpdmUgcGFyYSBmaW5zIGNvbWVyY2lhaXMpLgooICkgTsOjbyAoTyBsaWNlbmNpYW50ZSBwZXJtaXRlIGEgb3V0cm9zIGNvcGlhciwgZGlzdHJpYnVpciwgZXhpYmlyIGUgZXhlY3V0YXIgYSAKT0JSQSBzb21lbnRlIGNvbSBmaW5zIG7Do28gY29tZXJjaWFpcykuCgpQZXJtaXRlIG1vZGlmaWNhw6fDtWVzIGVtIHN1YSBPQlJBPyogKEZvbnRlOiBodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9jaG9vc2UvKSAKKE1hcmNhciBhcGVuYXMgdW1hIG9ww6fDo28pCiggKSBTaW0gKE8gbGljZW5jaWFudGUgcGVybWl0ZSBhIG91dHJvcyBjb3BpYXIsIGRpc3RyaWJ1aXIsIGV4aWJpciBlIGV4ZWN1dGFyIGEgCk9CUkEsIGJlbSBjb21vIHVzw6EtbGEgY29tbyBiYXNlIHBhcmEgb2JyYXMgZGVyaXZhZGFzKS4KKCApIFNpbSwgY29udGFudG8gcXVlIG9zIG91dHJvcyBjb21wYXJ0aWxoZW0gZGUgZm9ybWEgc2VtZWxoYW50ZSAoTyBsaWNlbmNpYWRvciAKcGVybWl0ZSBhb3Mgb3V0cm9zIGRpc3RyaWJ1aXIgb2JyYXMgZGVyaXZhdGl2YXMgc29tZW50ZSBzb2IgYSBtZXNtYSBsaWNlbsOnYSBvdSAKb3V0cmEgY29tcGF0w612ZWwgY29tIGEgcXVlIHJlZ2UgYSBPQlJBIGRvIGxpY2VuY2lhZG9yKS4KKCApIE7Do28gKE8gbGljZW5jaWFudGUgcGVybWl0ZSBhIG91dHJvcyBjb3BpYXIsIGRpc3RyaWJ1aXIgZSB0cmFuc21pdGlyIGFwZW5hcyAKY8OzcGlhcyBpbmFsdGVyYWRhcyBkYSBPQlJBIOKAkyBuw6NvIHBlcm1pdGUgb2JyYXMgZGVyaXZhZGFzKS4KCjcuIEEgcHJlc2VudGUgbGljZW7Dp2EsIG5vIHF1ZSBjb3ViZXIsIHBvZGVyw6Egc2VyIGNhbmNlbGFkYSBtZWRpYW50ZSBhdmlzbyBmb3JtYWwgCmRvIEFVVE9SLCDDoCBVTklWQVRFUywgY29tIGFudGVjZWTDqm5jaWEgbcOtbmltYSBkZSA5MCBkaWFzLCBzZW0gcHJlanVkaWNhciBvcyBhdG9zIApwcmF0aWNhZG9zIG5hIHN1YSB2aWfDqm5jaWEuCgpfX19fX19ffF9fX19fX19fX19ffF9fX19fX19fX19fX19fX198X19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KX19fX19fX3xfX19fX19fX19fX3xfX19fX19fX19fX19fX19ffF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCl9fX19fX198X19fX19fX19fX198X19fX19fX19fX19fX19fX3xfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19ffF9fX19fX19fX19ffF9fX19fX19fX19fX19fX198X19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KX19fX19fX3xfX19fX19fX19fX3xfX19fX19fX19fX19fX19ffF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCkPDs2RpZ28gfENQRiAgICAgICAgfE5vbWUgICAgICAgICAgICB8QXNzaW5hdHVyYSBkbyBEZXRlbnRvciBkb3MgRGlyZWl0b3MgQXV0b3JhaXMKCkxvY2FsIF9fX19fX19fX19fX19fX19fX19fIERhdGEgIF9fX19fL19fX19fXy9fX19fX19fCgoqIENhbXBvcyBkZSBwcmVlbmNoaW1lbnRvIG9icmlnYXTDs3Jpby4KKioqIEFwZW5hcyBzZXLDo28gYWNlaXRvcyB0ZXJtb3Mgb3JpZ2luYWlzIGUgYWRlcXVhZGFtZW50ZSBwcmVlbmNoaWRvcy4K |
dc.title.pt_BR.fl_str_mv |
Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma |
title |
Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma |
spellingShingle |
Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma Caron, Eduardo ENG Glaucoma Inteligência Artificial Rede Neural Artificial U-Net Artificial Intelligence Artificial Neural Network Image segmentation |
title_short |
Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma |
title_full |
Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma |
title_fullStr |
Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma |
title_full_unstemmed |
Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma |
title_sort |
Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma |
author |
Caron, Eduardo |
author_facet |
Caron, Eduardo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Franzen, Evandro |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7342971270440310 |
dc.contributor.author.fl_str_mv |
Caron, Eduardo |
contributor_str_mv |
Franzen, Evandro |
dc.subject.cnpq.fl_str_mv |
ENG |
topic |
ENG Glaucoma Inteligência Artificial Rede Neural Artificial U-Net Artificial Intelligence Artificial Neural Network Image segmentation |
dc.subject.por.fl_str_mv |
Glaucoma Inteligência Artificial Rede Neural Artificial U-Net Artificial Intelligence Artificial Neural Network Image segmentation |
description |
O uso de Inteligência Artificial (IA) para resolução de problemas complexos vem ganhando força no mundo inteiro. Técnicas baseadas em IA estão sendo amplamente adotadas no reconhecimento de imagens, de fala e de processamento de linguagem natural em diferentes áreas. A área da saúde está aderindo cada vez mais a Inteligência Artificial para diagnóstico e classificação de doenças, tendo como exemplo a doença de glaucoma, que pode ser detectada tanto por meio do processamento automatizado de grandes conjuntos de dados, quanto pela detecção precoce de novos padrões de doenças. Além disso, a IA promete mudar fundamentalmente as pesquisas que visam entender o desenvolvimento, a progressão e o tratamento do glaucoma, identificando novos fatores de risco e avaliando a importância dos existentes. Diante disso, o objetivo do presente trabalho foi verificar se a Rede Neural Artificial (RNA) de arquitetura U-Net é capaz de realizar a segmentação do disco óptico e a segmentação da escavação a partir de imagens de fundo de olho da base de imagens RIM-ONE, servindo de apoio aos profissionais na detecção do glaucoma. Como resultado, foi obtido um F1-score médio de 0,9440 para a segmentação do disco óptico e um F1-score médio de 0,8350 para a segmentação da escavação, comprovando que a rede neural U-Net é capaz de realizar a segmentação com boas métricas. |
publishDate |
2020 |
dc.date.submitted.none.fl_str_mv |
2020-07-14 |
dc.date.accessioned.fl_str_mv |
2020-10-28T00:15:23Z |
dc.date.available.fl_str_mv |
2020-10-28T00:15:23Z |
dc.date.issued.fl_str_mv |
2020-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CARON, Eduardo. Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma. 2020. Monografia (Graduação em Engenharia de Software) – Universidade do Vale do Taquari - Univates, Lajeado, 14 jul. 2020. Disponível em: http://hdl.handle.net/10737/2863. |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10737/2863 |
identifier_str_mv |
CARON, Eduardo. Segmentação do disco óptico e escavação com o uso de redes neurais para auxílio à detecção de glaucoma. 2020. Monografia (Graduação em Engenharia de Software) – Universidade do Vale do Taquari - Univates, Lajeado, 14 jul. 2020. Disponível em: http://hdl.handle.net/10737/2863. |
url |
http://hdl.handle.net/10737/2863 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) instname:Centro Universitário Univates (UNIVATES) instacron:UNIVATES |
instname_str |
Centro Universitário Univates (UNIVATES) |
instacron_str |
UNIVATES |
institution |
UNIVATES |
reponame_str |
Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) |
collection |
Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) |
bitstream.url.fl_str_mv |
https://www.univates.br/bdu/bitstreams/1e29b17c-e7dc-4405-8e7f-ecb389af85c6/download https://www.univates.br/bdu/bitstreams/67643579-6ede-480a-9c82-dc9077448349/download https://www.univates.br/bdu/bitstreams/566f983c-8f58-43f5-9e12-04f64c3e0974/download https://www.univates.br/bdu/bitstreams/844c0774-8870-4821-aa5b-88ab4d6a7a08/download https://www.univates.br/bdu/bitstreams/e39bcfa8-3e87-4c3b-855d-c048740b4231/download https://www.univates.br/bdu/bitstreams/e8661cc8-eb17-48f6-9101-45751d13115b/download https://www.univates.br/bdu/bitstreams/200bed13-08d6-4675-a315-5bcbb849656f/download |
bitstream.checksum.fl_str_mv |
3d17039e161401af8829401d388f2126 924993ce0b3ba389f79f32a1b2735415 d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bbc55c3abe017903add4e31d38590e6a f30682177522500e80d1cb1e25ddb093 a50532b5ad218cd7c7d431834fe866f7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) - Centro Universitário Univates (UNIVATES) |
repository.mail.fl_str_mv |
|
_version_ |
1813262418223038464 |