An elementary proof of MinVol(Rn) = 0 for n > 3
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652008000400002 |
Resumo: | In this paper, we give an elementary proof of the result that the minimal volumes of R³ and R4 are zero. The approach is to construct a sequence of explicit complete metrics on them such that the sectional curvatures are bounded in absolute value by 1 and the volumes tend to zero. As a direct consequence, we get that MinVol (Rn) = 0 for n > 3. |
id |
ABC-1_9e20cc3c9d763db4ec40bf8239b04bd0 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652008000400002 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
An elementary proof of MinVol(Rn) = 0 for n > 3minimal volumesmooth gluingbounded geometryIn this paper, we give an elementary proof of the result that the minimal volumes of R³ and R4 are zero. The approach is to construct a sequence of explicit complete metrics on them such that the sectional curvatures are bounded in absolute value by 1 and the volumes tend to zero. As a direct consequence, we get that MinVol (Rn) = 0 for n > 3.Academia Brasileira de Ciências2008-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652008000400002Anais da Academia Brasileira de Ciências v.80 n.4 2008reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652008000400002info:eu-repo/semantics/openAccessMei,JiaqiangWang,HongyuXu,Haifengeng2008-11-25T00:00:00Zoai:scielo:S0001-37652008000400002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2008-11-25T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
An elementary proof of MinVol(Rn) = 0 for n > 3 |
title |
An elementary proof of MinVol(Rn) = 0 for n > 3 |
spellingShingle |
An elementary proof of MinVol(Rn) = 0 for n > 3 Mei,Jiaqiang minimal volume smooth gluing bounded geometry |
title_short |
An elementary proof of MinVol(Rn) = 0 for n > 3 |
title_full |
An elementary proof of MinVol(Rn) = 0 for n > 3 |
title_fullStr |
An elementary proof of MinVol(Rn) = 0 for n > 3 |
title_full_unstemmed |
An elementary proof of MinVol(Rn) = 0 for n > 3 |
title_sort |
An elementary proof of MinVol(Rn) = 0 for n > 3 |
author |
Mei,Jiaqiang |
author_facet |
Mei,Jiaqiang Wang,Hongyu Xu,Haifeng |
author_role |
author |
author2 |
Wang,Hongyu Xu,Haifeng |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mei,Jiaqiang Wang,Hongyu Xu,Haifeng |
dc.subject.por.fl_str_mv |
minimal volume smooth gluing bounded geometry |
topic |
minimal volume smooth gluing bounded geometry |
description |
In this paper, we give an elementary proof of the result that the minimal volumes of R³ and R4 are zero. The approach is to construct a sequence of explicit complete metrics on them such that the sectional curvatures are bounded in absolute value by 1 and the volumes tend to zero. As a direct consequence, we get that MinVol (Rn) = 0 for n > 3. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652008000400002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652008000400002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652008000400002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.80 n.4 2008 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302857197125632 |