Modified Lyapunov equations for LTI descriptor systems

Detalhes bibliográficos
Autor(a) principal: Müller,Peter C.
Data de Publicação: 2006
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000400009
Resumo: For linear time-invariant (LTI) state space systems it is well-known that its asymptotic stability can be related to solution properties of the Lyapunov matrix equation according to so-called inertia theorems. The question now arises how analogous results can be obtained for LTI descriptor systems (singular systems, differential-algebraic equations). The stability behaviour of a LTI descriptor system is characterized by the eigenvalues of the related matrix pencil. Additionally, by a quadratic Lyapunov function the stability problem can be discussed by solution properties of a generalized Lyapunov matrix equation including a singular coefficient matrix. To overcome this difficult problem of singularity, the Lyapunov matrix equation will be modified such that a regular Lyapunov matrix equation appears and asymptotic stability is preserved. This aim can be reached by shifting the system matrices in a well defined manner. For that the a priori knowledge of an upper bound of the eigenvalues is assumed. It will be discussed how to get such bound. The paper ends with an inertia theorem where the solution properties of a regular modified Lyapunov matrix equation are uniquely related to the asymptotic stability of the LTI descriptor system.
id ABCM-2_76063f43af2573843fe2cdfa131fc81c
oai_identifier_str oai:scielo:S1678-58782006000400009
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Modified Lyapunov equations for LTI descriptor systemsDescriptor systemsasymptotic stabilityLyapunov matrix equationsinertia theoremFor linear time-invariant (LTI) state space systems it is well-known that its asymptotic stability can be related to solution properties of the Lyapunov matrix equation according to so-called inertia theorems. The question now arises how analogous results can be obtained for LTI descriptor systems (singular systems, differential-algebraic equations). The stability behaviour of a LTI descriptor system is characterized by the eigenvalues of the related matrix pencil. Additionally, by a quadratic Lyapunov function the stability problem can be discussed by solution properties of a generalized Lyapunov matrix equation including a singular coefficient matrix. To overcome this difficult problem of singularity, the Lyapunov matrix equation will be modified such that a regular Lyapunov matrix equation appears and asymptotic stability is preserved. This aim can be reached by shifting the system matrices in a well defined manner. For that the a priori knowledge of an upper bound of the eigenvalues is assumed. It will be discussed how to get such bound. The paper ends with an inertia theorem where the solution properties of a regular modified Lyapunov matrix equation are uniquely related to the asymptotic stability of the LTI descriptor system.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2006-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000400009Journal of the Brazilian Society of Mechanical Sciences and Engineering v.28 n.4 2006reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782006000400009info:eu-repo/semantics/openAccessMüller,Peter C.eng2007-10-08T00:00:00Zoai:scielo:S1678-58782006000400009Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2007-10-08T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Modified Lyapunov equations for LTI descriptor systems
title Modified Lyapunov equations for LTI descriptor systems
spellingShingle Modified Lyapunov equations for LTI descriptor systems
Müller,Peter C.
Descriptor systems
asymptotic stability
Lyapunov matrix equations
inertia theorem
title_short Modified Lyapunov equations for LTI descriptor systems
title_full Modified Lyapunov equations for LTI descriptor systems
title_fullStr Modified Lyapunov equations for LTI descriptor systems
title_full_unstemmed Modified Lyapunov equations for LTI descriptor systems
title_sort Modified Lyapunov equations for LTI descriptor systems
author Müller,Peter C.
author_facet Müller,Peter C.
author_role author
dc.contributor.author.fl_str_mv Müller,Peter C.
dc.subject.por.fl_str_mv Descriptor systems
asymptotic stability
Lyapunov matrix equations
inertia theorem
topic Descriptor systems
asymptotic stability
Lyapunov matrix equations
inertia theorem
description For linear time-invariant (LTI) state space systems it is well-known that its asymptotic stability can be related to solution properties of the Lyapunov matrix equation according to so-called inertia theorems. The question now arises how analogous results can be obtained for LTI descriptor systems (singular systems, differential-algebraic equations). The stability behaviour of a LTI descriptor system is characterized by the eigenvalues of the related matrix pencil. Additionally, by a quadratic Lyapunov function the stability problem can be discussed by solution properties of a generalized Lyapunov matrix equation including a singular coefficient matrix. To overcome this difficult problem of singularity, the Lyapunov matrix equation will be modified such that a regular Lyapunov matrix equation appears and asymptotic stability is preserved. This aim can be reached by shifting the system matrices in a well defined manner. For that the a priori knowledge of an upper bound of the eigenvalues is assumed. It will be discussed how to get such bound. The paper ends with an inertia theorem where the solution properties of a regular modified Lyapunov matrix equation are uniquely related to the asymptotic stability of the LTI descriptor system.
publishDate 2006
dc.date.none.fl_str_mv 2006-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000400009
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000400009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782006000400009
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.28 n.4 2006
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734680901419008