Immobilized Lactobacillus acidophilus produced from whey and alginate
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000200005 |
Resumo: | An analysis was made of the use of whey fermentation by Lactobacillus acidophilus LA-5 for encapsulated probiotic bacteria cell production. Fermentation was done in a 2-liter Biostat B Fermentor at 28±1 ºC without air supply and agitation maintained at 200 rpm. Different processing conditions were studied using Center Composite Design applied to Surface Response Methodology. Maximum cell yield (2.7 x10(10) NMP/mL for 36 hours) was achieved with 30.85 g/L of lactose, a pH value of 6.45 and 1.04 g/L of inoculum. Cell growth was evaluated using reconstituted and fresh whey after 144 hours of fermentation in pre-optimized conditions. Cell concentration after fermentation was 10(10) MPN/mL in all the assays. The Verhulst model proved to be satisfactory to fit the experimental results, providing a stationary cell concentration of 6.0 g/L and a specific growth rate of 0.09 h-1. Cells were collected by centrifugation at 15000g for 5 minutes at 4 ºC, immobilized in 2% alginate, and dried to a constant weight at 50 ºC. Immobilized probiotic cells presented 10(11) MPN/g, a time required to kill 90% of the organisms (D value) of 18 h (70 ºC), an activation energy of 76.04 kJ/mol for thermal inactivation, and an in vitro resistance to low pH (D value of 62.5 min at 37 ºC, pH 2.5). |
id |
ABEQ-1_252a8b42a6c09b9e54f7d1f71d32afd3 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322013000200005 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Immobilized Lactobacillus acidophilus produced from whey and alginateLactobacillus acidophilusImmobilized cellsProbioticsWheyAn analysis was made of the use of whey fermentation by Lactobacillus acidophilus LA-5 for encapsulated probiotic bacteria cell production. Fermentation was done in a 2-liter Biostat B Fermentor at 28±1 ºC without air supply and agitation maintained at 200 rpm. Different processing conditions were studied using Center Composite Design applied to Surface Response Methodology. Maximum cell yield (2.7 x10(10) NMP/mL for 36 hours) was achieved with 30.85 g/L of lactose, a pH value of 6.45 and 1.04 g/L of inoculum. Cell growth was evaluated using reconstituted and fresh whey after 144 hours of fermentation in pre-optimized conditions. Cell concentration after fermentation was 10(10) MPN/mL in all the assays. The Verhulst model proved to be satisfactory to fit the experimental results, providing a stationary cell concentration of 6.0 g/L and a specific growth rate of 0.09 h-1. Cells were collected by centrifugation at 15000g for 5 minutes at 4 ºC, immobilized in 2% alginate, and dried to a constant weight at 50 ºC. Immobilized probiotic cells presented 10(11) MPN/g, a time required to kill 90% of the organisms (D value) of 18 h (70 ºC), an activation energy of 76.04 kJ/mol for thermal inactivation, and an in vitro resistance to low pH (D value of 62.5 min at 37 ºC, pH 2.5).Brazilian Society of Chemical Engineering2013-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000200005Brazilian Journal of Chemical Engineering v.30 n.2 2013reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322013000200005info:eu-repo/semantics/openAccessRosa,P. R.Sá,E. M.Coutinho Filho,U.Cardoso,V. L.eng2013-05-08T00:00:00Zoai:scielo:S0104-66322013000200005Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2013-05-08T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Immobilized Lactobacillus acidophilus produced from whey and alginate |
title |
Immobilized Lactobacillus acidophilus produced from whey and alginate |
spellingShingle |
Immobilized Lactobacillus acidophilus produced from whey and alginate Rosa,P. R. Lactobacillus acidophilus Immobilized cells Probiotics Whey |
title_short |
Immobilized Lactobacillus acidophilus produced from whey and alginate |
title_full |
Immobilized Lactobacillus acidophilus produced from whey and alginate |
title_fullStr |
Immobilized Lactobacillus acidophilus produced from whey and alginate |
title_full_unstemmed |
Immobilized Lactobacillus acidophilus produced from whey and alginate |
title_sort |
Immobilized Lactobacillus acidophilus produced from whey and alginate |
author |
Rosa,P. R. |
author_facet |
Rosa,P. R. Sá,E. M. Coutinho Filho,U. Cardoso,V. L. |
author_role |
author |
author2 |
Sá,E. M. Coutinho Filho,U. Cardoso,V. L. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rosa,P. R. Sá,E. M. Coutinho Filho,U. Cardoso,V. L. |
dc.subject.por.fl_str_mv |
Lactobacillus acidophilus Immobilized cells Probiotics Whey |
topic |
Lactobacillus acidophilus Immobilized cells Probiotics Whey |
description |
An analysis was made of the use of whey fermentation by Lactobacillus acidophilus LA-5 for encapsulated probiotic bacteria cell production. Fermentation was done in a 2-liter Biostat B Fermentor at 28±1 ºC without air supply and agitation maintained at 200 rpm. Different processing conditions were studied using Center Composite Design applied to Surface Response Methodology. Maximum cell yield (2.7 x10(10) NMP/mL for 36 hours) was achieved with 30.85 g/L of lactose, a pH value of 6.45 and 1.04 g/L of inoculum. Cell growth was evaluated using reconstituted and fresh whey after 144 hours of fermentation in pre-optimized conditions. Cell concentration after fermentation was 10(10) MPN/mL in all the assays. The Verhulst model proved to be satisfactory to fit the experimental results, providing a stationary cell concentration of 6.0 g/L and a specific growth rate of 0.09 h-1. Cells were collected by centrifugation at 15000g for 5 minutes at 4 ºC, immobilized in 2% alginate, and dried to a constant weight at 50 ºC. Immobilized probiotic cells presented 10(11) MPN/g, a time required to kill 90% of the organisms (D value) of 18 h (70 ºC), an activation energy of 76.04 kJ/mol for thermal inactivation, and an in vitro resistance to low pH (D value of 62.5 min at 37 ºC, pH 2.5). |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000200005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000200005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322013000200005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.30 n.2 2013 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213173909520384 |