MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS

Detalhes bibliográficos
Autor(a) principal: Souza,Samara Silva de
Data de Publicação: 2018
Outros Autores: Castro,Julia de Vasconcellos, Porto,Luismar Marques
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000300869
Resumo: Abstract Genome-scale metabolic models based on a combination of genome sequence and biochemical information have strongly influenced the field of systems biology. However, basic principles of the operation of metabolic networks, in particular the central metabolism can be easily studied in smaller metabolic (core) models. Komagataeibacter hansenii ATCC 23769 has been used for bacterial nanocellulose (BNC) biosynthesis, and the recent availability of its genome sequence allowed the development of a metabolic model. The core metabolic model was constructed from an initial draft metabolic reconstruction including 74 reactions and 68 metabolites that provides insights for a better understanding of K. hansenii metabolic pathways. The applicability of the model is finally demonstrated by applying the FBA approach, and the in silico simulation successfully predicted the minimal medium and the growing abilities on different substrates. This core model can facilitate system-level metabolic analysis as well as developments for improving BNC production.
id ABEQ-1_5d9cd9e0514735957783978cffb32e17
oai_identifier_str oai:scielo:S0104-66322018000300869
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESISKomagataeibacter hanseniiBacterial nanocelluloseCore metabolic modelFlux balance analysisAbstract Genome-scale metabolic models based on a combination of genome sequence and biochemical information have strongly influenced the field of systems biology. However, basic principles of the operation of metabolic networks, in particular the central metabolism can be easily studied in smaller metabolic (core) models. Komagataeibacter hansenii ATCC 23769 has been used for bacterial nanocellulose (BNC) biosynthesis, and the recent availability of its genome sequence allowed the development of a metabolic model. The core metabolic model was constructed from an initial draft metabolic reconstruction including 74 reactions and 68 metabolites that provides insights for a better understanding of K. hansenii metabolic pathways. The applicability of the model is finally demonstrated by applying the FBA approach, and the in silico simulation successfully predicted the minimal medium and the growing abilities on different substrates. This core model can facilitate system-level metabolic analysis as well as developments for improving BNC production.Brazilian Society of Chemical Engineering2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000300869Brazilian Journal of Chemical Engineering v.35 n.3 2018reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20180353s20170327info:eu-repo/semantics/openAccessSouza,Samara Silva deCastro,Julia de VasconcellosPorto,Luismar Marqueseng2019-01-15T00:00:00Zoai:scielo:S0104-66322018000300869Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2019-01-15T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS
title MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS
spellingShingle MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS
Souza,Samara Silva de
Komagataeibacter hansenii
Bacterial nanocellulose
Core metabolic model
Flux balance analysis
title_short MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS
title_full MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS
title_fullStr MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS
title_full_unstemmed MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS
title_sort MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS
author Souza,Samara Silva de
author_facet Souza,Samara Silva de
Castro,Julia de Vasconcellos
Porto,Luismar Marques
author_role author
author2 Castro,Julia de Vasconcellos
Porto,Luismar Marques
author2_role author
author
dc.contributor.author.fl_str_mv Souza,Samara Silva de
Castro,Julia de Vasconcellos
Porto,Luismar Marques
dc.subject.por.fl_str_mv Komagataeibacter hansenii
Bacterial nanocellulose
Core metabolic model
Flux balance analysis
topic Komagataeibacter hansenii
Bacterial nanocellulose
Core metabolic model
Flux balance analysis
description Abstract Genome-scale metabolic models based on a combination of genome sequence and biochemical information have strongly influenced the field of systems biology. However, basic principles of the operation of metabolic networks, in particular the central metabolism can be easily studied in smaller metabolic (core) models. Komagataeibacter hansenii ATCC 23769 has been used for bacterial nanocellulose (BNC) biosynthesis, and the recent availability of its genome sequence allowed the development of a metabolic model. The core metabolic model was constructed from an initial draft metabolic reconstruction including 74 reactions and 68 metabolites that provides insights for a better understanding of K. hansenii metabolic pathways. The applicability of the model is finally demonstrated by applying the FBA approach, and the in silico simulation successfully predicted the minimal medium and the growing abilities on different substrates. This core model can facilitate system-level metabolic analysis as well as developments for improving BNC production.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000300869
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000300869
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20180353s20170327
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.35 n.3 2018
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213175964729344