Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/214698 |
Resumo: | Estima-se que cerca de 1/3 da produção de alimentos é desperdiçado entre a cadeia produtiva até o consumo, o que acarreta em problemas econômicos, sociais e ambientais. Deste modo, tecnologias que venham aumentar o tempo de prateleira dos alimentos é indispensável e urgente, o que poderia reduzir o apelo constante por maior produção. Com base nessas problemáticas, o presente estudo teve como objetivo avaliar a produção de celulose bacteriana em diferentes meios de cultivo para, posteriormente, desenvolver uma blenda polimérica de celulose bacteriana e pectina para a aplicação e análise preliminar em morangos, visando revestir, proteger e aumentar a vida de prateleira da fruta. Para o desenvolvimento do trabalho, foi utilizada a bactéria Komagataeibacter hansenii ATCC 23769 (antigo Acetobacter xylinus Yamada) para a produção da celulose em diferentes meios de cultivo e condições de agitação. As melhores produções de celulose foram alcançadas nos meios Hestrin e Schramm (HS) modificados com diferentes fontes de carbono, tais como: caldo de cana, como substituinte da glicose, (concentração de celulose igual a 38,8 ± 15,4 g. L‾ ¹, em base seca); HS suplementado com etanol, (concentração de celulose de 33,4 ± 4,4 g. L‾ ¹, em base seca) e a 100 rpm de rotação orbital; e suco de laranja, como substituinte da glicose, (concentração de celulose de 27,2 ± 9,4 g. L‾ ¹, em base seca) e, em meio estático. O cultivo de celulose bacteriana decorreu pelo período de 14 dias. Com os resultados obtidos, foi possível determinar a melhor estratégia para a produção de celulose bacteriana para o uso no desenvolvimento do revestimento bioplástico, que foi elaborado com base na blenda polimérica de celulose bacteriana e pectina. Outra blenda foi desenvolvida a partir da introdução do material hidrofóbico óleo de coco, visando possivelmente melhoria no revestimento com características hidrofílicas. Na avaliação sobre as características mecânicas do biomaterial, foi possível determinar que o revestimento bioplástico de celulose bacteriana e pectina apresentou maior permeabilidade ao vapor de água, maior resistência à tração e menor deformação que o revestimento bioplástico com o aditivo de óleo de coco. No entanto, ambas amostras mostraram alta solubilidade em água. Com a investigação, foi plausível determinar que o revestimento à base de celulose bacteriana e pectina e a blenda de celulose bacteriana, pectina e óleo de coco aplicado sobre o morango evitou a senescência precoce e preservou a fruta, evitando perda de massa de 39% no revestimento de celulose bacteriana e pectina e 61% no revestimento bioplástico de celulose bacteriana, pectina e óleo de coco. |
id |
UNSP_798c8fb3743bf0b39f349c7c1afbf8b9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/214698 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangosBacterial cellulose and Pectin: a polymer blend for the conservation of strawberriesBioplásticoPectinaCelulose bacterianaKomagataeibacter hanseniiMorangoRevestimentoBioplasticPectinBacterial celluloseKomagataeibacter hanseniiStrawberryCoatingEstima-se que cerca de 1/3 da produção de alimentos é desperdiçado entre a cadeia produtiva até o consumo, o que acarreta em problemas econômicos, sociais e ambientais. Deste modo, tecnologias que venham aumentar o tempo de prateleira dos alimentos é indispensável e urgente, o que poderia reduzir o apelo constante por maior produção. Com base nessas problemáticas, o presente estudo teve como objetivo avaliar a produção de celulose bacteriana em diferentes meios de cultivo para, posteriormente, desenvolver uma blenda polimérica de celulose bacteriana e pectina para a aplicação e análise preliminar em morangos, visando revestir, proteger e aumentar a vida de prateleira da fruta. Para o desenvolvimento do trabalho, foi utilizada a bactéria Komagataeibacter hansenii ATCC 23769 (antigo Acetobacter xylinus Yamada) para a produção da celulose em diferentes meios de cultivo e condições de agitação. As melhores produções de celulose foram alcançadas nos meios Hestrin e Schramm (HS) modificados com diferentes fontes de carbono, tais como: caldo de cana, como substituinte da glicose, (concentração de celulose igual a 38,8 ± 15,4 g. L‾ ¹, em base seca); HS suplementado com etanol, (concentração de celulose de 33,4 ± 4,4 g. L‾ ¹, em base seca) e a 100 rpm de rotação orbital; e suco de laranja, como substituinte da glicose, (concentração de celulose de 27,2 ± 9,4 g. L‾ ¹, em base seca) e, em meio estático. O cultivo de celulose bacteriana decorreu pelo período de 14 dias. Com os resultados obtidos, foi possível determinar a melhor estratégia para a produção de celulose bacteriana para o uso no desenvolvimento do revestimento bioplástico, que foi elaborado com base na blenda polimérica de celulose bacteriana e pectina. Outra blenda foi desenvolvida a partir da introdução do material hidrofóbico óleo de coco, visando possivelmente melhoria no revestimento com características hidrofílicas. Na avaliação sobre as características mecânicas do biomaterial, foi possível determinar que o revestimento bioplástico de celulose bacteriana e pectina apresentou maior permeabilidade ao vapor de água, maior resistência à tração e menor deformação que o revestimento bioplástico com o aditivo de óleo de coco. No entanto, ambas amostras mostraram alta solubilidade em água. Com a investigação, foi plausível determinar que o revestimento à base de celulose bacteriana e pectina e a blenda de celulose bacteriana, pectina e óleo de coco aplicado sobre o morango evitou a senescência precoce e preservou a fruta, evitando perda de massa de 39% no revestimento de celulose bacteriana e pectina e 61% no revestimento bioplástico de celulose bacteriana, pectina e óleo de coco.It is estimated that about 1/3 of food production is wasted between a production chain and consumption, which leads to economic, social and environmental problems, thus, technologies that will increase the shelf life of food are indispensable and urgent, which would reduce the constant call for more production. Based on these issues, this study aimed to evaluate the production of bacterial cellulose in different culture media to further develop a polymer blend of bacterial cellulose and pectin for application and preliminary analysis in strawberries, aiming to coat, protect and increase life of fruit shelf. For the development of the work, the bacterium Komagataeibacter hansenii ATCC 23769 (formerly Acetobacter xylinus Yamada) was used for the production of cellulose in different culture media and agitation conditions. The best cellulose productions were achieved in Hestrin and Schramm (HS) media modified with different carbon sources: such as sugarcane juice as a glucose substitute, (cellulose concentration equal to 38.8 ± 15.4 g. L‾ ¹, on a dry basis); HS supplemented with ethanol, (cellulose concentration of 33.4 ± 4.4 g. L‾ ¹, on a dry basis), at 100 rpm of orbital rotation; and orange juice as a replacement for glucose (concentration of cellulose of 27.2 ± 9.4 g. L‾ ¹, on a dry basis), in a static medium. The bacterial cellulose culture was carried out for a period of 14 days. With the results obtained, it was possible to determine the best strategy for the production of bacterial cellulose for use in the development of the bioplastic coating, which was elaborated based on the polymeric blend of bacterial cellulose and pectin. Another blend was developed, with the introduction of the hydrophobic material coconut oil, possibly aiming to improve the coating with hydrophilic characteristics. In the evaluation of the mechanical characteristics of the biomaterial, it was possible to determine that the bioplastic coating of bacterial cellulose and pectin had greater permeability to water vapor, greater tensile strength and less deformation than the bioplastic coating with the additive of coconut oil. However, both samples showed high solubility in water. With the investigation, it was plausible to determine the coating based on bacterial cellulose and pectin and the blend of bacterial cellulose, pectin and coconut oil applied on the strawberry avoided premature senescence and preserved the fruit, preventing a 39% loss of mass in the coating. bacterial cellulose and pectin and 61% in the bioplastic coating of bacterial cellulose, pectin and coconut oil.Universidade Estadual Paulista (Unesp)Baptista Neto, ÁlvaroHerculano, Rondinelli DonizettiUniversidade Estadual Paulista (Unesp)Sasaki, Josana Carla da Silva2021-10-07T16:26:48Z2021-10-07T16:26:48Z2021-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/11449/21469833004030170P0porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-24T19:11:40Zoai:repositorio.unesp.br:11449/214698Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:10:22.955529Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangos Bacterial cellulose and Pectin: a polymer blend for the conservation of strawberries |
title |
Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangos |
spellingShingle |
Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangos Sasaki, Josana Carla da Silva Bioplástico Pectina Celulose bacteriana Komagataeibacter hansenii Morango Revestimento Bioplastic Pectin Bacterial cellulose Komagataeibacter hansenii Strawberry Coating |
title_short |
Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangos |
title_full |
Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangos |
title_fullStr |
Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangos |
title_full_unstemmed |
Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangos |
title_sort |
Celulose bacteriana e Pectina: uma blenda polimérica para a conservação de morangos |
author |
Sasaki, Josana Carla da Silva |
author_facet |
Sasaki, Josana Carla da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Baptista Neto, Álvaro Herculano, Rondinelli Donizetti Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Sasaki, Josana Carla da Silva |
dc.subject.por.fl_str_mv |
Bioplástico Pectina Celulose bacteriana Komagataeibacter hansenii Morango Revestimento Bioplastic Pectin Bacterial cellulose Komagataeibacter hansenii Strawberry Coating |
topic |
Bioplástico Pectina Celulose bacteriana Komagataeibacter hansenii Morango Revestimento Bioplastic Pectin Bacterial cellulose Komagataeibacter hansenii Strawberry Coating |
description |
Estima-se que cerca de 1/3 da produção de alimentos é desperdiçado entre a cadeia produtiva até o consumo, o que acarreta em problemas econômicos, sociais e ambientais. Deste modo, tecnologias que venham aumentar o tempo de prateleira dos alimentos é indispensável e urgente, o que poderia reduzir o apelo constante por maior produção. Com base nessas problemáticas, o presente estudo teve como objetivo avaliar a produção de celulose bacteriana em diferentes meios de cultivo para, posteriormente, desenvolver uma blenda polimérica de celulose bacteriana e pectina para a aplicação e análise preliminar em morangos, visando revestir, proteger e aumentar a vida de prateleira da fruta. Para o desenvolvimento do trabalho, foi utilizada a bactéria Komagataeibacter hansenii ATCC 23769 (antigo Acetobacter xylinus Yamada) para a produção da celulose em diferentes meios de cultivo e condições de agitação. As melhores produções de celulose foram alcançadas nos meios Hestrin e Schramm (HS) modificados com diferentes fontes de carbono, tais como: caldo de cana, como substituinte da glicose, (concentração de celulose igual a 38,8 ± 15,4 g. L‾ ¹, em base seca); HS suplementado com etanol, (concentração de celulose de 33,4 ± 4,4 g. L‾ ¹, em base seca) e a 100 rpm de rotação orbital; e suco de laranja, como substituinte da glicose, (concentração de celulose de 27,2 ± 9,4 g. L‾ ¹, em base seca) e, em meio estático. O cultivo de celulose bacteriana decorreu pelo período de 14 dias. Com os resultados obtidos, foi possível determinar a melhor estratégia para a produção de celulose bacteriana para o uso no desenvolvimento do revestimento bioplástico, que foi elaborado com base na blenda polimérica de celulose bacteriana e pectina. Outra blenda foi desenvolvida a partir da introdução do material hidrofóbico óleo de coco, visando possivelmente melhoria no revestimento com características hidrofílicas. Na avaliação sobre as características mecânicas do biomaterial, foi possível determinar que o revestimento bioplástico de celulose bacteriana e pectina apresentou maior permeabilidade ao vapor de água, maior resistência à tração e menor deformação que o revestimento bioplástico com o aditivo de óleo de coco. No entanto, ambas amostras mostraram alta solubilidade em água. Com a investigação, foi plausível determinar que o revestimento à base de celulose bacteriana e pectina e a blenda de celulose bacteriana, pectina e óleo de coco aplicado sobre o morango evitou a senescência precoce e preservou a fruta, evitando perda de massa de 39% no revestimento de celulose bacteriana e pectina e 61% no revestimento bioplástico de celulose bacteriana, pectina e óleo de coco. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-07T16:26:48Z 2021-10-07T16:26:48Z 2021-08-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/214698 33004030170P0 |
url |
http://hdl.handle.net/11449/214698 |
identifier_str_mv |
33004030170P0 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128905078374400 |