PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322015000100035 |
Resumo: | Abstract The production and characterization of cellulase from thermophilic strain Bacillus sp. C1AC5507 was studied. For enzyme production, sugarcane bagasse was used as carbon source. The produced carboxymethyl cellulase (CMCase) had a molecular weight around 55 kDa and its activity varied between 0.14 and 0.37 IU mL-1 in conditions predicted by Response Surface Methodology. The optimum temperature and pH for the CMCase production were 70 °C and 7.0, respectively. The enzyme activity was inhibited mostly by Cu+2 and activated mostly by Co+2, Mn2+, Ca+2 and Fe+3. Our findings provide a contribution to the use of natural wastes such as sugarcane bagasse as substrate for growth and production of thermophilic CMCase. Further optimization to increase the production of cellulase enables the use in industrial applications. |
id |
ABEQ-1_add3923838cbb90f2d494670e33ffde4 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322015000100035 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATIONBacillus sp.CMCaseSugarcaneEnzyme productionThermophilic cellulaseAbstract The production and characterization of cellulase from thermophilic strain Bacillus sp. C1AC5507 was studied. For enzyme production, sugarcane bagasse was used as carbon source. The produced carboxymethyl cellulase (CMCase) had a molecular weight around 55 kDa and its activity varied between 0.14 and 0.37 IU mL-1 in conditions predicted by Response Surface Methodology. The optimum temperature and pH for the CMCase production were 70 °C and 7.0, respectively. The enzyme activity was inhibited mostly by Cu+2 and activated mostly by Co+2, Mn2+, Ca+2 and Fe+3. Our findings provide a contribution to the use of natural wastes such as sugarcane bagasse as substrate for growth and production of thermophilic CMCase. Further optimization to increase the production of cellulase enables the use in industrial applications.Brazilian Society of Chemical Engineering2015-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322015000100035Brazilian Journal of Chemical Engineering v.32 n.1 2015reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20150321s00003298info:eu-repo/semantics/openAccessPadilha,I. Q. M.Carvalho,L. C. T.Dias,P. V. S.Grisi,T. C. S. L.Silva,F. L. Honorato daSantos,S. F. M.Araújo,D. A. M.eng2015-05-12T00:00:00Zoai:scielo:S0104-66322015000100035Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2015-05-12T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION |
title |
PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION |
spellingShingle |
PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION Padilha,I. Q. M. Bacillus sp. CMCase Sugarcane Enzyme production Thermophilic cellulase |
title_short |
PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION |
title_full |
PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION |
title_fullStr |
PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION |
title_full_unstemmed |
PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION |
title_sort |
PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION |
author |
Padilha,I. Q. M. |
author_facet |
Padilha,I. Q. M. Carvalho,L. C. T. Dias,P. V. S. Grisi,T. C. S. L. Silva,F. L. Honorato da Santos,S. F. M. Araújo,D. A. M. |
author_role |
author |
author2 |
Carvalho,L. C. T. Dias,P. V. S. Grisi,T. C. S. L. Silva,F. L. Honorato da Santos,S. F. M. Araújo,D. A. M. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Padilha,I. Q. M. Carvalho,L. C. T. Dias,P. V. S. Grisi,T. C. S. L. Silva,F. L. Honorato da Santos,S. F. M. Araújo,D. A. M. |
dc.subject.por.fl_str_mv |
Bacillus sp. CMCase Sugarcane Enzyme production Thermophilic cellulase |
topic |
Bacillus sp. CMCase Sugarcane Enzyme production Thermophilic cellulase |
description |
Abstract The production and characterization of cellulase from thermophilic strain Bacillus sp. C1AC5507 was studied. For enzyme production, sugarcane bagasse was used as carbon source. The produced carboxymethyl cellulase (CMCase) had a molecular weight around 55 kDa and its activity varied between 0.14 and 0.37 IU mL-1 in conditions predicted by Response Surface Methodology. The optimum temperature and pH for the CMCase production were 70 °C and 7.0, respectively. The enzyme activity was inhibited mostly by Cu+2 and activated mostly by Co+2, Mn2+, Ca+2 and Fe+3. Our findings provide a contribution to the use of natural wastes such as sugarcane bagasse as substrate for growth and production of thermophilic CMCase. Further optimization to increase the production of cellulase enables the use in industrial applications. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322015000100035 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322015000100035 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0104-6632.20150321s00003298 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.32 n.1 2015 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213174642475008 |