Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Films

Detalhes bibliográficos
Autor(a) principal: Dakhel,Aqeel Aziz
Data de Publicação: 2015
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000100222
Resumo: The objective of the present investigation is to study the effect of beryllium doping on the structural, optical, and electrical properties of CdO, focusing on the improvement of carrier mobility (μ) that accompanied with high electrical conductivity and good optical transparency in the near-infrared region. Thus, nanocrystallite Be-doped CdO films were prepared by vacuum evaporation method. The characterisation of the samples was done by using X-ray diffraction (XRD), scanning electron microscope (SEM), absorption spectroscopy, and Hall measurements. The characteristic XRD patterns indicated that the prepared Be-doped CdO films were single phase of cubic CdO structure of highly [111] orientation. Scanning electron microscope analysis revealed that the studied CdO films were characterized with high-density threads (wooly structure) and the incorporation of beryllium ions modified that structure forming almost round grains. It was observed that the room temperature conductivity (σ) and mobility (μ) could be controlled through the level of beryllium doping. The utmost carrier mobility was found to be ~130 cm2/Vs in ~ 0.10% Be films maintaining a low electrical resistivity of ~ 4.14×10−4 Ω cm and a good transparency of ~ 80% in the NIR spectral region. The results demonstrate that beryllium doping in low concentration levels is a good enough dopant that might be used to improve the optoelectrical properties of CdO. Generally, the properties found can make CdO:Be films particularly interesting in application of optoelectronic devices, solar cells, and field of transparent conducting oxides (TCO).
id ABMABCABPOL-1_bd482f7fca355bca12abf236aea07a53
oai_identifier_str oai:scielo:S1516-14392015000100222
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Filmsoxidescoatingthin filmssemiconductorsTCOThe objective of the present investigation is to study the effect of beryllium doping on the structural, optical, and electrical properties of CdO, focusing on the improvement of carrier mobility (μ) that accompanied with high electrical conductivity and good optical transparency in the near-infrared region. Thus, nanocrystallite Be-doped CdO films were prepared by vacuum evaporation method. The characterisation of the samples was done by using X-ray diffraction (XRD), scanning electron microscope (SEM), absorption spectroscopy, and Hall measurements. The characteristic XRD patterns indicated that the prepared Be-doped CdO films were single phase of cubic CdO structure of highly [111] orientation. Scanning electron microscope analysis revealed that the studied CdO films were characterized with high-density threads (wooly structure) and the incorporation of beryllium ions modified that structure forming almost round grains. It was observed that the room temperature conductivity (σ) and mobility (μ) could be controlled through the level of beryllium doping. The utmost carrier mobility was found to be ~130 cm2/Vs in ~ 0.10% Be films maintaining a low electrical resistivity of ~ 4.14×10−4 Ω cm and a good transparency of ~ 80% in the NIR spectral region. The results demonstrate that beryllium doping in low concentration levels is a good enough dopant that might be used to improve the optoelectrical properties of CdO. Generally, the properties found can make CdO:Be films particularly interesting in application of optoelectronic devices, solar cells, and field of transparent conducting oxides (TCO).ABM, ABC, ABPol2015-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000100222Materials Research v.18 n.1 2015reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1516-1439.301014info:eu-repo/semantics/openAccessDakhel,Aqeel Azizeng2015-04-10T00:00:00Zoai:scielo:S1516-14392015000100222Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2015-04-10T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Films
title Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Films
spellingShingle Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Films
Dakhel,Aqeel Aziz
oxides
coating
thin films
semiconductors
TCO
title_short Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Films
title_full Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Films
title_fullStr Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Films
title_full_unstemmed Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Films
title_sort Development of Electrical Conduction with Beryllium Doping of CdO Nanostructure thin Films
author Dakhel,Aqeel Aziz
author_facet Dakhel,Aqeel Aziz
author_role author
dc.contributor.author.fl_str_mv Dakhel,Aqeel Aziz
dc.subject.por.fl_str_mv oxides
coating
thin films
semiconductors
TCO
topic oxides
coating
thin films
semiconductors
TCO
description The objective of the present investigation is to study the effect of beryllium doping on the structural, optical, and electrical properties of CdO, focusing on the improvement of carrier mobility (μ) that accompanied with high electrical conductivity and good optical transparency in the near-infrared region. Thus, nanocrystallite Be-doped CdO films were prepared by vacuum evaporation method. The characterisation of the samples was done by using X-ray diffraction (XRD), scanning electron microscope (SEM), absorption spectroscopy, and Hall measurements. The characteristic XRD patterns indicated that the prepared Be-doped CdO films were single phase of cubic CdO structure of highly [111] orientation. Scanning electron microscope analysis revealed that the studied CdO films were characterized with high-density threads (wooly structure) and the incorporation of beryllium ions modified that structure forming almost round grains. It was observed that the room temperature conductivity (σ) and mobility (μ) could be controlled through the level of beryllium doping. The utmost carrier mobility was found to be ~130 cm2/Vs in ~ 0.10% Be films maintaining a low electrical resistivity of ~ 4.14×10−4 Ω cm and a good transparency of ~ 80% in the NIR spectral region. The results demonstrate that beryllium doping in low concentration levels is a good enough dopant that might be used to improve the optoelectrical properties of CdO. Generally, the properties found can make CdO:Be films particularly interesting in application of optoelectronic devices, solar cells, and field of transparent conducting oxides (TCO).
publishDate 2015
dc.date.none.fl_str_mv 2015-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000100222
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000100222
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1516-1439.301014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.18 n.1 2015
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212665409929216