Comparison of mathematical models for fitting particle-size distribution curves
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/6782 |
Resumo: | Particle-size distribution is fundamental for characterizing construction materials, soil mechanics, soil physics, sediment-flux in rivers, and others. The techniques used to determine the particle-size distribution of a sample are point-wise, demanding posterior interpolation to fit the complete particle-size distribution curve and to obtain values of specific diameters. The transformation of discrete points into continuous functions can be made by mathematical models. However, there are few studies to determine the best model to fit particle-size distribution curves. The objective of this work was to test and compare 14 different models with feasibility to fit the cumulative particle-size distribution curve based on four measured points. The parameter used to compare the models was the sum of the square errors between the measured and calculated values. The most recommendable models to fit the particle-size distribution curve, based on four discrete points, are Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P, and Morgan et al. 3P, all using three fitting parameters. |
id |
EMBRAPA-4_47608c0fa4582709bee7d83bd9bb1940 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/6782 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Comparison of mathematical models for fitting particle-size distribution curvesComparação de modelos matemáticos para o traçado de curvas granulométricassoil texture; soil fractions; non-linear regression; growth curvestextura do solo; granulometria; regressão não linear; curva de crescimentoParticle-size distribution is fundamental for characterizing construction materials, soil mechanics, soil physics, sediment-flux in rivers, and others. The techniques used to determine the particle-size distribution of a sample are point-wise, demanding posterior interpolation to fit the complete particle-size distribution curve and to obtain values of specific diameters. The transformation of discrete points into continuous functions can be made by mathematical models. However, there are few studies to determine the best model to fit particle-size distribution curves. The objective of this work was to test and compare 14 different models with feasibility to fit the cumulative particle-size distribution curve based on four measured points. The parameter used to compare the models was the sum of the square errors between the measured and calculated values. The most recommendable models to fit the particle-size distribution curve, based on four discrete points, are Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P, and Morgan et al. 3P, all using three fitting parameters.A distribuição granulométrica de partículas sólidas é essencial para as áreas de material de construção, mecânica dos solos, física dos solos, hidrossedimentologia, entre outras. As técnicas utilizadas na avaliação da distribuição granulométrica de amostras resultam em valores pontuais, dependendo de posterior interpolação para o traçado da curva granulométrica e a obtenção de diâmetros característicos específicos. A transformação de valores pontuais em funções contínuas pode ser realizada por meio de modelos matemáticos. Entretanto, há poucos estudos com a finalidade de determinar o melhor modelo para o ajuste de curvas granulométricas. O objetivo deste trabalho foi testar e comparar 14 diferentes modelos passíveis de utilização no traçado da curva granulométrica de partículas sólidas com base em quatro pontos medidos. O parâmetro de comparação entre os modelos foi a soma de quadrado dos erros entre os valores medidos e calculados. Os modelos mais recomendados no traçado da curva granulométrica, a partir de quatro pontos, são os de Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P e Morgan et al. 3P, todos com três parâmetros de ajuste.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária Brasileirada Silva, Euzebio MedradoLima, Jorge Enoch Furquim WerneckRodrigues, Lineu Neivade Azevedo, Juscelino Antônio2004-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/6782Pesquisa Agropecuaria Brasileira; v.39, n.4, abr. 2004; 363-370Pesquisa Agropecuária Brasileira; v.39, n.4, abr. 2004; 363-3701678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/6782/3838info:eu-repo/semantics/openAccess2014-07-16T18:44:50Zoai:ojs.seer.sct.embrapa.br:article/6782Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-07-16T18:44:50Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Comparison of mathematical models for fitting particle-size distribution curves Comparação de modelos matemáticos para o traçado de curvas granulométricas |
title |
Comparison of mathematical models for fitting particle-size distribution curves |
spellingShingle |
Comparison of mathematical models for fitting particle-size distribution curves da Silva, Euzebio Medrado soil texture; soil fractions; non-linear regression; growth curves textura do solo; granulometria; regressão não linear; curva de crescimento |
title_short |
Comparison of mathematical models for fitting particle-size distribution curves |
title_full |
Comparison of mathematical models for fitting particle-size distribution curves |
title_fullStr |
Comparison of mathematical models for fitting particle-size distribution curves |
title_full_unstemmed |
Comparison of mathematical models for fitting particle-size distribution curves |
title_sort |
Comparison of mathematical models for fitting particle-size distribution curves |
author |
da Silva, Euzebio Medrado |
author_facet |
da Silva, Euzebio Medrado Lima, Jorge Enoch Furquim Werneck Rodrigues, Lineu Neiva de Azevedo, Juscelino Antônio |
author_role |
author |
author2 |
Lima, Jorge Enoch Furquim Werneck Rodrigues, Lineu Neiva de Azevedo, Juscelino Antônio |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
da Silva, Euzebio Medrado Lima, Jorge Enoch Furquim Werneck Rodrigues, Lineu Neiva de Azevedo, Juscelino Antônio |
dc.subject.por.fl_str_mv |
soil texture; soil fractions; non-linear regression; growth curves textura do solo; granulometria; regressão não linear; curva de crescimento |
topic |
soil texture; soil fractions; non-linear regression; growth curves textura do solo; granulometria; regressão não linear; curva de crescimento |
description |
Particle-size distribution is fundamental for characterizing construction materials, soil mechanics, soil physics, sediment-flux in rivers, and others. The techniques used to determine the particle-size distribution of a sample are point-wise, demanding posterior interpolation to fit the complete particle-size distribution curve and to obtain values of specific diameters. The transformation of discrete points into continuous functions can be made by mathematical models. However, there are few studies to determine the best model to fit particle-size distribution curves. The objective of this work was to test and compare 14 different models with feasibility to fit the cumulative particle-size distribution curve based on four measured points. The parameter used to compare the models was the sum of the square errors between the measured and calculated values. The most recommendable models to fit the particle-size distribution curve, based on four discrete points, are Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P, and Morgan et al. 3P, all using three fitting parameters. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-04-01 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/6782 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/6782 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/6782/3838 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.39, n.4, abr. 2004; 363-370 Pesquisa Agropecuária Brasileira; v.39, n.4, abr. 2004; 363-370 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416679255965696 |