Comparison of mathematical models for fitting particle-size distribution curves

Detalhes bibliográficos
Autor(a) principal: da Silva, Euzebio Medrado
Data de Publicação: 2004
Outros Autores: Lima, Jorge Enoch Furquim Werneck, Rodrigues, Lineu Neiva, de Azevedo, Juscelino Antônio
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/6782
Resumo: Particle-size distribution is fundamental for characterizing construction materials, soil mechanics, soil physics, sediment-flux in rivers, and others. The techniques used to determine the particle-size distribution of a sample are point-wise, demanding posterior interpolation to fit the complete particle-size distribution curve and to obtain values of specific diameters. The transformation of discrete points into continuous functions can be made by mathematical models. However, there are few studies to determine the best model to fit particle-size distribution curves. The objective of this work was to test and compare 14 different models with feasibility to fit the cumulative particle-size distribution curve based on four measured points. The parameter used to compare the models was the sum of the square errors between the measured and calculated values. The most recommendable models to fit the particle-size distribution curve, based on four discrete points, are Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P, and Morgan et al. 3P, all using three fitting parameters.
id EMBRAPA-4_47608c0fa4582709bee7d83bd9bb1940
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/6782
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Comparison of mathematical models for fitting particle-size distribution curvesComparação de modelos matemáticos para o traçado de curvas granulométricassoil texture; soil fractions; non-linear regression; growth curvestextura do solo; granulometria; regressão não linear; curva de crescimentoParticle-size distribution is fundamental for characterizing construction materials, soil mechanics, soil physics, sediment-flux in rivers, and others. The techniques used to determine the particle-size distribution of a sample are point-wise, demanding posterior interpolation to fit the complete particle-size distribution curve and to obtain values of specific diameters. The transformation of discrete points into continuous functions can be made by mathematical models. However, there are few studies to determine the best model to fit particle-size distribution curves. The objective of this work was to test and compare 14 different models with feasibility to fit the cumulative particle-size distribution curve based on four measured points. The parameter used to compare the models was the sum of the square errors between the measured and calculated values. The most recommendable models to fit the particle-size distribution curve, based on four discrete points, are Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P, and Morgan et al. 3P, all using three fitting parameters.A distribuição granulométrica de partículas sólidas é essencial para as áreas de material de construção, mecânica dos solos, física dos solos, hidrossedimentologia, entre outras. As técnicas utilizadas na avaliação da distribuição granulométrica de amostras resultam em valores pontuais, dependendo de posterior interpolação para o traçado da curva granulométrica e a obtenção de diâmetros característicos específicos. A transformação de valores pontuais em funções contínuas pode ser realizada por meio de modelos matemáticos. Entretanto, há poucos estudos com a finalidade de determinar o melhor modelo para o ajuste de curvas granulométricas. O objetivo deste trabalho foi testar e comparar 14 diferentes modelos passíveis de utilização no traçado da curva granulométrica de partículas sólidas com base em quatro pontos medidos. O parâmetro de comparação entre os modelos foi a soma de quadrado dos erros entre os valores medidos e calculados. Os modelos mais recomendados no traçado da curva granulométrica, a partir de quatro pontos, são os de Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P e Morgan et al. 3P, todos com três parâmetros de ajuste.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária Brasileirada Silva, Euzebio MedradoLima, Jorge Enoch Furquim WerneckRodrigues, Lineu Neivade Azevedo, Juscelino Antônio2004-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/6782Pesquisa Agropecuaria Brasileira; v.39, n.4, abr. 2004; 363-370Pesquisa Agropecuária Brasileira; v.39, n.4, abr. 2004; 363-3701678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/6782/3838info:eu-repo/semantics/openAccess2014-07-16T18:44:50Zoai:ojs.seer.sct.embrapa.br:article/6782Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-07-16T18:44:50Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Comparison of mathematical models for fitting particle-size distribution curves
Comparação de modelos matemáticos para o traçado de curvas granulométricas
title Comparison of mathematical models for fitting particle-size distribution curves
spellingShingle Comparison of mathematical models for fitting particle-size distribution curves
da Silva, Euzebio Medrado
soil texture; soil fractions; non-linear regression; growth curves
textura do solo; granulometria; regressão não linear; curva de crescimento
title_short Comparison of mathematical models for fitting particle-size distribution curves
title_full Comparison of mathematical models for fitting particle-size distribution curves
title_fullStr Comparison of mathematical models for fitting particle-size distribution curves
title_full_unstemmed Comparison of mathematical models for fitting particle-size distribution curves
title_sort Comparison of mathematical models for fitting particle-size distribution curves
author da Silva, Euzebio Medrado
author_facet da Silva, Euzebio Medrado
Lima, Jorge Enoch Furquim Werneck
Rodrigues, Lineu Neiva
de Azevedo, Juscelino Antônio
author_role author
author2 Lima, Jorge Enoch Furquim Werneck
Rodrigues, Lineu Neiva
de Azevedo, Juscelino Antônio
author2_role author
author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv da Silva, Euzebio Medrado
Lima, Jorge Enoch Furquim Werneck
Rodrigues, Lineu Neiva
de Azevedo, Juscelino Antônio
dc.subject.por.fl_str_mv soil texture; soil fractions; non-linear regression; growth curves
textura do solo; granulometria; regressão não linear; curva de crescimento
topic soil texture; soil fractions; non-linear regression; growth curves
textura do solo; granulometria; regressão não linear; curva de crescimento
description Particle-size distribution is fundamental for characterizing construction materials, soil mechanics, soil physics, sediment-flux in rivers, and others. The techniques used to determine the particle-size distribution of a sample are point-wise, demanding posterior interpolation to fit the complete particle-size distribution curve and to obtain values of specific diameters. The transformation of discrete points into continuous functions can be made by mathematical models. However, there are few studies to determine the best model to fit particle-size distribution curves. The objective of this work was to test and compare 14 different models with feasibility to fit the cumulative particle-size distribution curve based on four measured points. The parameter used to compare the models was the sum of the square errors between the measured and calculated values. The most recommendable models to fit the particle-size distribution curve, based on four discrete points, are Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P, and Morgan et al. 3P, all using three fitting parameters.
publishDate 2004
dc.date.none.fl_str_mv 2004-04-01
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/6782
url https://seer.sct.embrapa.br/index.php/pab/article/view/6782
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/6782/3838
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; v.39, n.4, abr. 2004; 363-370
Pesquisa Agropecuária Brasileira; v.39, n.4, abr. 2004; 363-370
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416679255965696