Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/18976 |
Resumo: | The objective of this work was to adjust models to estimate dendrometric characteristics of the Brazilian dry tropical forest (Caatinga) from Landsat 5 TM sensor data. Measures for tree diameter and height were taken in 60 inventory plots (400 m2), in two municipalities of the state of Sergipe, Brazil. Basal area and wood volume were estimated using an allometric equation and form factor (f = 0.9). Explanatory variables were taken from the TM sensor, after radiometric and geometric correction, having considered, in the analysis, six spectral bands, with 30 m spatial resolution, besides the indexes of simple ratio (SR), of normalized difference vegetation (NDVI), and of soil‑adjusted vegetation (Savi). To choose the best explanatory variables, the coefficient of determination (R2), the root mean square error (RMSE), and the Bayesian information criterion (BIC) were considered. The basal area per hectare did not show a significant correlation with any of the explanatory variables used. The best models were adjusted to tree mean height per plot (R2 = 0.4; RMSE = 13%) and to wood volume per hectare (R2 = 0.6; RMSE = 42%). The metrics derived from the Landsat 5 TM sensor have great potential to explain variation in the mean height of trees and in the wood volume per hectare, in remaining areas of the tropical dry forest in the Brazilian Northeast. |
id |
EMBRAPA-4_8df58424ef3c35b837a64ddbcc482655 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/18976 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM dataRelações empíricas entre características dendrométricas da Caatinga brasileira e dados TM Landsat 5vegetation index; NDVI; REDD; reducing emissions; Savi; remote sensingíndice de vegetação; NDVI; REDD; redução de emissões; Savi; sensoriamento remotoThe objective of this work was to adjust models to estimate dendrometric characteristics of the Brazilian dry tropical forest (Caatinga) from Landsat 5 TM sensor data. Measures for tree diameter and height were taken in 60 inventory plots (400 m2), in two municipalities of the state of Sergipe, Brazil. Basal area and wood volume were estimated using an allometric equation and form factor (f = 0.9). Explanatory variables were taken from the TM sensor, after radiometric and geometric correction, having considered, in the analysis, six spectral bands, with 30 m spatial resolution, besides the indexes of simple ratio (SR), of normalized difference vegetation (NDVI), and of soil‑adjusted vegetation (Savi). To choose the best explanatory variables, the coefficient of determination (R2), the root mean square error (RMSE), and the Bayesian information criterion (BIC) were considered. The basal area per hectare did not show a significant correlation with any of the explanatory variables used. The best models were adjusted to tree mean height per plot (R2 = 0.4; RMSE = 13%) and to wood volume per hectare (R2 = 0.6; RMSE = 42%). The metrics derived from the Landsat 5 TM sensor have great potential to explain variation in the mean height of trees and in the wood volume per hectare, in remaining areas of the tropical dry forest in the Brazilian Northeast.O objetivo deste trabalho foi ajustar modelos para estimar características dendrométricas da Caatinga brasileira a partir de dados do sensor TM do Landsat 5. Medidas de diâmetro e altura das árvores foram obtidas de 60 parcelas de inventário (400 m2), em dois municípios do Estado de Sergipe. A área basal e o volume de madeira foram estimados com uso de equação alométrica e de fator de forma (f = 0,9). As variáveis explicativas foram obtidas do sensor TM, após correção radiométrica e geométrica, tendo-se considerado, na análise, seis bandas espectrais, com resolução espacial de 30 m, além dos índices de razão simples (SR), de vegetação por diferença normalizada (NDVI) e de vegetação ajustado ao solo (Savi). Na escolha das melhores variáveis explicativas, foram considerados coeficiente de determinação (R2), raiz do erro quadrático médio (RMSE) e critério bayesiano de informação (CBI). A área basal por hectare não apresentou correlação significativa com nenhuma das variáveis explicativas utilizadas. Os melhores modelos foram ajustados à altura média das árvores por parcela (R2 = 0,4; RMSE = 13%) e ao volume de madeira por hectare (R2 = 0,6; RMSE = 42%). As métricas derivadas do sensor TM do Landsat 5 têm grande potencial para explicar variações de altura média das árvores e do volume de madeira por hectare, em remanescentes de Caatinga situados no Nordeste brasileiro.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraAlmeida, André Quintão deMello, Anabel Aparecida deDória Neto, Antônio LuizFerraz, Raphael Cavalcanti2014-06-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/18976Pesquisa Agropecuaria Brasileira; v.49, n.4, abr. 2014; 306-315Pesquisa Agropecuária Brasileira; v.49, n.4, abr. 2014; 306-3151678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/18976/12637https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/18976/11339info:eu-repo/semantics/openAccess2014-06-11T18:46:47Zoai:ojs.seer.sct.embrapa.br:article/18976Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-06-11T18:46:47Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data Relações empíricas entre características dendrométricas da Caatinga brasileira e dados TM Landsat 5 |
title |
Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data |
spellingShingle |
Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data Almeida, André Quintão de vegetation index; NDVI; REDD; reducing emissions; Savi; remote sensing índice de vegetação; NDVI; REDD; redução de emissões; Savi; sensoriamento remoto |
title_short |
Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data |
title_full |
Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data |
title_fullStr |
Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data |
title_full_unstemmed |
Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data |
title_sort |
Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data |
author |
Almeida, André Quintão de |
author_facet |
Almeida, André Quintão de Mello, Anabel Aparecida de Dória Neto, Antônio Luiz Ferraz, Raphael Cavalcanti |
author_role |
author |
author2 |
Mello, Anabel Aparecida de Dória Neto, Antônio Luiz Ferraz, Raphael Cavalcanti |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Almeida, André Quintão de Mello, Anabel Aparecida de Dória Neto, Antônio Luiz Ferraz, Raphael Cavalcanti |
dc.subject.por.fl_str_mv |
vegetation index; NDVI; REDD; reducing emissions; Savi; remote sensing índice de vegetação; NDVI; REDD; redução de emissões; Savi; sensoriamento remoto |
topic |
vegetation index; NDVI; REDD; reducing emissions; Savi; remote sensing índice de vegetação; NDVI; REDD; redução de emissões; Savi; sensoriamento remoto |
description |
The objective of this work was to adjust models to estimate dendrometric characteristics of the Brazilian dry tropical forest (Caatinga) from Landsat 5 TM sensor data. Measures for tree diameter and height were taken in 60 inventory plots (400 m2), in two municipalities of the state of Sergipe, Brazil. Basal area and wood volume were estimated using an allometric equation and form factor (f = 0.9). Explanatory variables were taken from the TM sensor, after radiometric and geometric correction, having considered, in the analysis, six spectral bands, with 30 m spatial resolution, besides the indexes of simple ratio (SR), of normalized difference vegetation (NDVI), and of soil‑adjusted vegetation (Savi). To choose the best explanatory variables, the coefficient of determination (R2), the root mean square error (RMSE), and the Bayesian information criterion (BIC) were considered. The basal area per hectare did not show a significant correlation with any of the explanatory variables used. The best models were adjusted to tree mean height per plot (R2 = 0.4; RMSE = 13%) and to wood volume per hectare (R2 = 0.6; RMSE = 42%). The metrics derived from the Landsat 5 TM sensor have great potential to explain variation in the mean height of trees and in the wood volume per hectare, in remaining areas of the tropical dry forest in the Brazilian Northeast. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-11 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/18976 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/18976 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/18976/12637 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/18976/11339 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.49, n.4, abr. 2014; 306-315 Pesquisa Agropecuária Brasileira; v.49, n.4, abr. 2014; 306-315 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416672418201600 |