Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data

Detalhes bibliográficos
Autor(a) principal: Almeida, André Quintão de
Data de Publicação: 2014
Outros Autores: Mello, Anabel Aparecida de, Dória Neto, Antônio Luiz, Ferraz, Raphael Cavalcanti
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/18976
Resumo: The objective of this work was to adjust models to estimate dendrometric characteristics of the Brazilian dry tropical forest (Caatinga) from Landsat 5 TM sensor data. Measures for tree diameter and height were taken in 60 inventory plots (400 m2), in two municipalities of the state of Sergipe, Brazil. Basal area and wood volume were estimated using an allometric equation and form factor (f = 0.9). Explanatory variables were taken from the TM sensor, after radiometric and geometric correction, having considered, in the analysis, six spectral bands, with 30 m spatial resolution, besides the indexes of simple ratio (SR), of normalized difference vegetation (NDVI), and of soil‑adjusted vegetation (Savi). To choose the best explanatory variables, the coefficient of determination (R2), the root mean square error (RMSE), and the Bayesian information criterion (BIC) were considered. The basal area per hectare did not show a significant correlation with any of the explanatory variables used. The best models were adjusted to tree mean height per plot (R2 = 0.4; RMSE = 13%) and to wood volume per hectare (R2 = 0.6; RMSE = 42%). The metrics derived from the Landsat 5 TM sensor have great potential to explain variation in the mean height of trees and in the wood volume per hectare, in remaining areas of the tropical dry forest in the Brazilian Northeast.
id EMBRAPA-4_8df58424ef3c35b837a64ddbcc482655
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/18976
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM dataRelações empíricas entre características dendrométricas da Caatinga brasileira e dados TM Landsat 5vegetation index; NDVI; REDD; reducing emissions; Savi; remote sensingíndice de vegetação; NDVI; REDD; redução de emissões; Savi; sensoriamento remotoThe objective of this work was to adjust models to estimate dendrometric characteristics of the Brazilian dry tropical forest (Caatinga) from Landsat 5 TM sensor data. Measures for tree diameter and height were taken in 60 inventory plots (400 m2), in two municipalities of the state of Sergipe, Brazil. Basal area and wood volume were estimated using an allometric equation and form factor (f = 0.9). Explanatory variables were taken from the TM sensor, after radiometric and geometric correction, having considered, in the analysis, six spectral bands, with 30 m spatial resolution, besides the indexes of simple ratio (SR), of normalized difference vegetation (NDVI), and of soil‑adjusted vegetation (Savi). To choose the best explanatory variables, the coefficient of determination (R2), the root mean square error (RMSE), and the Bayesian information criterion (BIC) were considered. The basal area per hectare did not show a significant correlation with any of the explanatory variables used. The best models were adjusted to tree mean height per plot (R2 = 0.4; RMSE = 13%) and to wood volume per hectare (R2 = 0.6; RMSE = 42%). The metrics derived from the Landsat 5 TM sensor have great potential to explain variation in the mean height of trees and in the wood volume per hectare, in remaining areas of the tropical dry forest in the Brazilian Northeast.O objetivo deste trabalho foi ajustar modelos para estimar características dendrométricas da Caatinga brasileira a partir de dados do sensor TM do Landsat 5. Medidas de diâmetro e altura das árvores foram obtidas de 60 parcelas de inventário (400 m2), em dois municípios do Estado de Sergipe. A área basal e o volume de madeira foram estimados com uso de equação alométrica e de fator de forma (f = 0,9). As variáveis explicativas foram obtidas do sensor TM, após correção radiométrica e geométrica, tendo-se considerado, na análise, seis bandas espectrais, com resolução espacial de 30 m, além dos índices de razão simples (SR), de vegetação por diferença normalizada (NDVI) e de vegetação ajustado ao solo (Savi). Na escolha das melhores variáveis explicativas, foram considerados coeficiente de determinação (R2), raiz do erro quadrático médio (RMSE) e critério bayesiano de informação (CBI). A área basal por hectare não apresentou correlação significativa com nenhuma das variáveis explicativas utilizadas. Os melhores modelos foram ajustados à altura média das árvores por parcela (R2 = 0,4; RMSE = 13%) e ao volume de madeira por hectare (R2 = 0,6; RMSE = 42%). As métricas derivadas do sensor TM do Landsat 5 têm grande potencial para explicar variações de altura média das árvores e do volume de madeira por hectare, em remanescentes de Caatinga situados no Nordeste brasileiro.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraAlmeida, André Quintão deMello, Anabel Aparecida deDória Neto, Antônio LuizFerraz, Raphael Cavalcanti2014-06-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/18976Pesquisa Agropecuaria Brasileira; v.49, n.4, abr. 2014; 306-315Pesquisa Agropecuária Brasileira; v.49, n.4, abr. 2014; 306-3151678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/18976/12637https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/18976/11339info:eu-repo/semantics/openAccess2014-06-11T18:46:47Zoai:ojs.seer.sct.embrapa.br:article/18976Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-06-11T18:46:47Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data
Relações empíricas entre características dendrométricas da Caatinga brasileira e dados TM Landsat 5
title Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data
spellingShingle Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data
Almeida, André Quintão de
vegetation index; NDVI; REDD; reducing emissions; Savi; remote sensing
índice de vegetação; NDVI; REDD; redução de emissões; Savi; sensoriamento remoto
title_short Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data
title_full Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data
title_fullStr Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data
title_full_unstemmed Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data
title_sort Empiric relations between dendrometric characteristics of the Brazilian dry forest and Landsat 5 TM data
author Almeida, André Quintão de
author_facet Almeida, André Quintão de
Mello, Anabel Aparecida de
Dória Neto, Antônio Luiz
Ferraz, Raphael Cavalcanti
author_role author
author2 Mello, Anabel Aparecida de
Dória Neto, Antônio Luiz
Ferraz, Raphael Cavalcanti
author2_role author
author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Almeida, André Quintão de
Mello, Anabel Aparecida de
Dória Neto, Antônio Luiz
Ferraz, Raphael Cavalcanti
dc.subject.por.fl_str_mv vegetation index; NDVI; REDD; reducing emissions; Savi; remote sensing
índice de vegetação; NDVI; REDD; redução de emissões; Savi; sensoriamento remoto
topic vegetation index; NDVI; REDD; reducing emissions; Savi; remote sensing
índice de vegetação; NDVI; REDD; redução de emissões; Savi; sensoriamento remoto
description The objective of this work was to adjust models to estimate dendrometric characteristics of the Brazilian dry tropical forest (Caatinga) from Landsat 5 TM sensor data. Measures for tree diameter and height were taken in 60 inventory plots (400 m2), in two municipalities of the state of Sergipe, Brazil. Basal area and wood volume were estimated using an allometric equation and form factor (f = 0.9). Explanatory variables were taken from the TM sensor, after radiometric and geometric correction, having considered, in the analysis, six spectral bands, with 30 m spatial resolution, besides the indexes of simple ratio (SR), of normalized difference vegetation (NDVI), and of soil‑adjusted vegetation (Savi). To choose the best explanatory variables, the coefficient of determination (R2), the root mean square error (RMSE), and the Bayesian information criterion (BIC) were considered. The basal area per hectare did not show a significant correlation with any of the explanatory variables used. The best models were adjusted to tree mean height per plot (R2 = 0.4; RMSE = 13%) and to wood volume per hectare (R2 = 0.6; RMSE = 42%). The metrics derived from the Landsat 5 TM sensor have great potential to explain variation in the mean height of trees and in the wood volume per hectare, in remaining areas of the tropical dry forest in the Brazilian Northeast.
publishDate 2014
dc.date.none.fl_str_mv 2014-06-11
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/18976
url https://seer.sct.embrapa.br/index.php/pab/article/view/18976
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/18976/12637
https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/18976/11339
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; v.49, n.4, abr. 2014; 306-315
Pesquisa Agropecuária Brasileira; v.49, n.4, abr. 2014; 306-315
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416672418201600