AMMI analysis with imputed data in genotype x environment interaction experiments in cotton

Detalhes bibliográficos
Autor(a) principal: Arciniegas-Alarcón, Sergio
Data de Publicação: 2010
Outros Autores: Dias, Carlos Tadeu dos Santos
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/2090
Resumo: The objective of this work was to evaluate the convenience of defining the number of multiplicative components of additive main effect and multiplicative interaction models (AMMI) in genotype x enviroment interaction experiments in cotton with imputed or unbalanced data. A simulation study was carried out based on a matrix of real seed-cotton productivity data obtained in trials with genotype x environment interaction carried out with 15 genotypes at 27 locations in Brazil. The simulation was made with random withdrawals of 10, 20 and 30% of the data. The optimal number of multiplicative components for the AMMI model was determined using the Cornelius test and the likelihood ratio test onto the matrix completed by imputation. A correction based on the data missing in the Cornelius procedure was proposed for testing the hypothesis when the analysis is made from averages and the repetitions are not available. For data imputation, the methods considered used robust submodels, alternating least squares and multiple imputation. For analysis of unbalanced experiments, it is advisable to choose the number of multiplicative components of the AMMI model only from the observed information and to make the classical estimation of parameters based on the matrices completed by imputation.
id EMBRAPA-4_bbfa9399b401e5ae520a69454c7d02ef
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/2090
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling AMMI analysis with imputed data in genotype x environment interaction experiments in cottonAnálise AMMI com dados imputados em experimentos de interação genótipo x ambiente de algodãoGossypium hirsutum; unbalanced data; data imputation; AMMI modelsGossypium hirsutum; desbalanceamento; imputação de dados; modelos AMMIThe objective of this work was to evaluate the convenience of defining the number of multiplicative components of additive main effect and multiplicative interaction models (AMMI) in genotype x enviroment interaction experiments in cotton with imputed or unbalanced data. A simulation study was carried out based on a matrix of real seed-cotton productivity data obtained in trials with genotype x environment interaction carried out with 15 genotypes at 27 locations in Brazil. The simulation was made with random withdrawals of 10, 20 and 30% of the data. The optimal number of multiplicative components for the AMMI model was determined using the Cornelius test and the likelihood ratio test onto the matrix completed by imputation. A correction based on the data missing in the Cornelius procedure was proposed for testing the hypothesis when the analysis is made from averages and the repetitions are not available. For data imputation, the methods considered used robust submodels, alternating least squares and multiple imputation. For analysis of unbalanced experiments, it is advisable to choose the number of multiplicative components of the AMMI model only from the observed information and to make the classical estimation of parameters based on the matrices completed by imputation.O objetivo deste trabalho foi avaliar a conveniência de definir o número de componentes multiplicativos dos modelos de efeitos principais aditivos com interação multiplicativa (AMMI) em experimentos de interações genótipo x ambiente de algodão com dados imputados ou desbalanceados. Um estudo de simulação foi realizado com base em uma matriz de dados reais de produtividade de algodão em caroço, obtidos em ensaios de interação genótipo x ambiente, conduzidos com 15 cultivares em 27 locais no Brasil. A simulação foi feita com retiradas aleatórias de 10, 20 e 30% dos dados. O número ótimo de componentes multiplicativos para o modelo AMMI foi determinado usando o teste de Cornelius e o teste de razão de verossimilhança sobre as matrizes completadas por imputação. Para testar as hipóteses, quando a análise é feita a partir de médias e não são disponibilizadas as repetições, foi proposta uma correção com base nas observações ausentes no teste de Cornelius. Para a imputação de dados, foram considerados métodos usando submodelos robustos, mínimos quadrados alternados e imputação múltipla. Na análise de experimentos desbalanceados, é recomendável escolher o número de componentes multiplicativos do modelo AMMI somente a partir da informação observada e fazer a estimação clássica dos parâmetros com base nas matrizes completadas por imputação.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraCNPqArciniegas-Alarcón, SergioDias, Carlos Tadeu dos Santos2010-12-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/2090Pesquisa Agropecuaria Brasileira; v.44, n.11, nov. 2009; 1391-1397Pesquisa Agropecuária Brasileira; v.44, n.11, nov. 2009; 1391-13971678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/2090/5872https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/2090/1491https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/2090/1492info:eu-repo/semantics/openAccess2012-06-17T11:54:04Zoai:ojs.seer.sct.embrapa.br:article/2090Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2012-06-17T11:54:04Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv AMMI analysis with imputed data in genotype x environment interaction experiments in cotton
Análise AMMI com dados imputados em experimentos de interação genótipo x ambiente de algodão
title AMMI analysis with imputed data in genotype x environment interaction experiments in cotton
spellingShingle AMMI analysis with imputed data in genotype x environment interaction experiments in cotton
Arciniegas-Alarcón, Sergio
Gossypium hirsutum; unbalanced data; data imputation; AMMI models
Gossypium hirsutum; desbalanceamento; imputação de dados; modelos AMMI
title_short AMMI analysis with imputed data in genotype x environment interaction experiments in cotton
title_full AMMI analysis with imputed data in genotype x environment interaction experiments in cotton
title_fullStr AMMI analysis with imputed data in genotype x environment interaction experiments in cotton
title_full_unstemmed AMMI analysis with imputed data in genotype x environment interaction experiments in cotton
title_sort AMMI analysis with imputed data in genotype x environment interaction experiments in cotton
author Arciniegas-Alarcón, Sergio
author_facet Arciniegas-Alarcón, Sergio
Dias, Carlos Tadeu dos Santos
author_role author
author2 Dias, Carlos Tadeu dos Santos
author2_role author
dc.contributor.none.fl_str_mv
CNPq
dc.contributor.author.fl_str_mv Arciniegas-Alarcón, Sergio
Dias, Carlos Tadeu dos Santos
dc.subject.por.fl_str_mv Gossypium hirsutum; unbalanced data; data imputation; AMMI models
Gossypium hirsutum; desbalanceamento; imputação de dados; modelos AMMI
topic Gossypium hirsutum; unbalanced data; data imputation; AMMI models
Gossypium hirsutum; desbalanceamento; imputação de dados; modelos AMMI
description The objective of this work was to evaluate the convenience of defining the number of multiplicative components of additive main effect and multiplicative interaction models (AMMI) in genotype x enviroment interaction experiments in cotton with imputed or unbalanced data. A simulation study was carried out based on a matrix of real seed-cotton productivity data obtained in trials with genotype x environment interaction carried out with 15 genotypes at 27 locations in Brazil. The simulation was made with random withdrawals of 10, 20 and 30% of the data. The optimal number of multiplicative components for the AMMI model was determined using the Cornelius test and the likelihood ratio test onto the matrix completed by imputation. A correction based on the data missing in the Cornelius procedure was proposed for testing the hypothesis when the analysis is made from averages and the repetitions are not available. For data imputation, the methods considered used robust submodels, alternating least squares and multiple imputation. For analysis of unbalanced experiments, it is advisable to choose the number of multiplicative components of the AMMI model only from the observed information and to make the classical estimation of parameters based on the matrices completed by imputation.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-09
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/2090
url https://seer.sct.embrapa.br/index.php/pab/article/view/2090
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/2090/5872
https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/2090/1491
https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/2090/1492
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; v.44, n.11, nov. 2009; 1391-1397
Pesquisa Agropecuária Brasileira; v.44, n.11, nov. 2009; 1391-1397
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416658298077184