A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.

Detalhes bibliográficos
Autor(a) principal: LU, D.
Data de Publicação: 2011
Outros Autores: LI, G., MORAN, E., DUTRA, L., BATISTELLA, M.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/902113
Resumo: Many data fusion methods are available, but it is poorly understood which fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar data for land cover classification. This research explores the integration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for land cover classification in a moist tropical region of the Brazilian Amazon. Different data fusion methods?principal component analysis (PCA), wavelet-merging technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized multiplication (NMM)?were explored. Land cover classification was conducted with maximum likelihood classification based on different scenarios. This research indicates that individual radar data yield much poorer land cover classifications than TM data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band data. Compared to the TM data, the Wavelet multisensor fusion improved overall classification by 3.3%?5.7%, HPF performed similarly, but PCA and NMM reduced overall classification accuracy by 5.1%?6.1% and 7.6% ?12.7%, respectively. Different polarization options, such as HH and HV, work similarly when used in data fusion. This research underscores the importance of selecting a suitable data fusion method that can preserve spectral fidelity while improving spatial resolution.
id EMBR_0b065c8f8112332712d744d0de2ac151
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/902113
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.Landsat Thematic MapperWavelet multisensorMany data fusion methods are available, but it is poorly understood which fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar data for land cover classification. This research explores the integration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for land cover classification in a moist tropical region of the Brazilian Amazon. Different data fusion methods?principal component analysis (PCA), wavelet-merging technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized multiplication (NMM)?were explored. Land cover classification was conducted with maximum likelihood classification based on different scenarios. This research indicates that individual radar data yield much poorer land cover classifications than TM data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band data. Compared to the TM data, the Wavelet multisensor fusion improved overall classification by 3.3%?5.7%, HPF performed similarly, but PCA and NMM reduced overall classification accuracy by 5.1%?6.1% and 7.6% ?12.7%, respectively. Different polarization options, such as HH and HV, work similarly when used in data fusion. This research underscores the importance of selecting a suitable data fusion method that can preserve spectral fidelity while improving spatial resolution.DENGSHENG LU, INDIANA UNIVERSITY; GUIYING LI, INDIANA UNIVERSITY; EMILIO MORAN, INDIANA UNIVERSITY; LUCIANO DUTRA, INPE; MATEUS BATISTELLA, CNPM.LU, D.LI, G.MORAN, E.DUTRA, L.BATISTELLA, M.2014-09-17T07:35:27Z2014-09-17T07:35:27Z2011-10-0320112019-05-03T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleGIScience & Remote Sensing, v. 48, n. 3, p. 345-370, 2011.http://www.alice.cnptia.embrapa.br/alice/handle/doc/90211310.2747/1548-1603.48.3.345porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T01:57:19Zoai:www.alice.cnptia.embrapa.br:doc/902113Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T01:57:19falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T01:57:19Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.
title A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.
spellingShingle A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.
LU, D.
Landsat Thematic Mapper
Wavelet multisensor
title_short A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.
title_full A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.
title_fullStr A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.
title_full_unstemmed A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.
title_sort A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.
author LU, D.
author_facet LU, D.
LI, G.
MORAN, E.
DUTRA, L.
BATISTELLA, M.
author_role author
author2 LI, G.
MORAN, E.
DUTRA, L.
BATISTELLA, M.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv DENGSHENG LU, INDIANA UNIVERSITY; GUIYING LI, INDIANA UNIVERSITY; EMILIO MORAN, INDIANA UNIVERSITY; LUCIANO DUTRA, INPE; MATEUS BATISTELLA, CNPM.
dc.contributor.author.fl_str_mv LU, D.
LI, G.
MORAN, E.
DUTRA, L.
BATISTELLA, M.
dc.subject.por.fl_str_mv Landsat Thematic Mapper
Wavelet multisensor
topic Landsat Thematic Mapper
Wavelet multisensor
description Many data fusion methods are available, but it is poorly understood which fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar data for land cover classification. This research explores the integration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for land cover classification in a moist tropical region of the Brazilian Amazon. Different data fusion methods?principal component analysis (PCA), wavelet-merging technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized multiplication (NMM)?were explored. Land cover classification was conducted with maximum likelihood classification based on different scenarios. This research indicates that individual radar data yield much poorer land cover classifications than TM data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band data. Compared to the TM data, the Wavelet multisensor fusion improved overall classification by 3.3%?5.7%, HPF performed similarly, but PCA and NMM reduced overall classification accuracy by 5.1%?6.1% and 7.6% ?12.7%, respectively. Different polarization options, such as HH and HV, work similarly when used in data fusion. This research underscores the importance of selecting a suitable data fusion method that can preserve spectral fidelity while improving spatial resolution.
publishDate 2011
dc.date.none.fl_str_mv 2011-10-03
2011
2014-09-17T07:35:27Z
2014-09-17T07:35:27Z
2019-05-03T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv GIScience & Remote Sensing, v. 48, n. 3, p. 345-370, 2011.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/902113
10.2747/1548-1603.48.3.345
identifier_str_mv GIScience & Remote Sensing, v. 48, n. 3, p. 345-370, 2011.
10.2747/1548-1603.48.3.345
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/902113
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503394119909376