Determination of optimal number of independent components in yield traits in rice.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139185 https://doi.org/10.1590/1678-992X-2020-0397 |
Resumo: | The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values. |
id |
EMBR_0c8e793a50173ff2171fb2836c8c6b1c |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1139185 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Determination of optimal number of independent components in yield traits in rice.Melhoramento Genético VegetalProdutividadeArrozGenomicsPlant breedingYieldsRiceThe principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values.JAQUICELE APARECIDA DA COSTA, UFV; CAMILA FERREIRA AZEVEDO, UFV; MOYSÉS NASCIMENTO, UFV; FABYANO FONSECA E SILVA, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; ANA CAROLINA CAMPANA NASCIMENTO, UFV.COSTA, J. A. daAZEVEDO, C. F.NASCIMENTO, M.SILVA, F. F.RESENDE, M. D. V. deNASCIMENTO, A. C. C.2022-01-19T18:00:33Z2022-01-19T18:00:33Z2022-01-192022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleScientia Agricola, v. 79, n. 6, p. 1-8, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139185https://doi.org/10.1590/1678-992X-2020-0397enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-01-19T18:00:43Zoai:www.alice.cnptia.embrapa.br:doc/1139185Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-01-19T18:00:43Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Determination of optimal number of independent components in yield traits in rice. |
title |
Determination of optimal number of independent components in yield traits in rice. |
spellingShingle |
Determination of optimal number of independent components in yield traits in rice. COSTA, J. A. da Melhoramento Genético Vegetal Produtividade Arroz Genomics Plant breeding Yields Rice |
title_short |
Determination of optimal number of independent components in yield traits in rice. |
title_full |
Determination of optimal number of independent components in yield traits in rice. |
title_fullStr |
Determination of optimal number of independent components in yield traits in rice. |
title_full_unstemmed |
Determination of optimal number of independent components in yield traits in rice. |
title_sort |
Determination of optimal number of independent components in yield traits in rice. |
author |
COSTA, J. A. da |
author_facet |
COSTA, J. A. da AZEVEDO, C. F. NASCIMENTO, M. SILVA, F. F. RESENDE, M. D. V. de NASCIMENTO, A. C. C. |
author_role |
author |
author2 |
AZEVEDO, C. F. NASCIMENTO, M. SILVA, F. F. RESENDE, M. D. V. de NASCIMENTO, A. C. C. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
JAQUICELE APARECIDA DA COSTA, UFV; CAMILA FERREIRA AZEVEDO, UFV; MOYSÉS NASCIMENTO, UFV; FABYANO FONSECA E SILVA, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; ANA CAROLINA CAMPANA NASCIMENTO, UFV. |
dc.contributor.author.fl_str_mv |
COSTA, J. A. da AZEVEDO, C. F. NASCIMENTO, M. SILVA, F. F. RESENDE, M. D. V. de NASCIMENTO, A. C. C. |
dc.subject.por.fl_str_mv |
Melhoramento Genético Vegetal Produtividade Arroz Genomics Plant breeding Yields Rice |
topic |
Melhoramento Genético Vegetal Produtividade Arroz Genomics Plant breeding Yields Rice |
description |
The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-19T18:00:33Z 2022-01-19T18:00:33Z 2022-01-19 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Scientia Agricola, v. 79, n. 6, p. 1-8, 2022. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139185 https://doi.org/10.1590/1678-992X-2020-0397 |
identifier_str_mv |
Scientia Agricola, v. 79, n. 6, p. 1-8, 2022. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139185 https://doi.org/10.1590/1678-992X-2020-0397 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695627464671232 |