Determination of optimal number of independent components in yield traits in rice.

Detalhes bibliográficos
Autor(a) principal: COSTA, J. A. da
Data de Publicação: 2022
Outros Autores: AZEVEDO, C. F., NASCIMENTO, M., SILVA, F. F., RESENDE, M. D. V. de, NASCIMENTO, A. C. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139185
https://doi.org/10.1590/1678-992X-2020-0397
Resumo: The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values.
id EMBR_0c8e793a50173ff2171fb2836c8c6b1c
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1139185
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Determination of optimal number of independent components in yield traits in rice.Melhoramento Genético VegetalProdutividadeArrozGenomicsPlant breedingYieldsRiceThe principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values.JAQUICELE APARECIDA DA COSTA, UFV; CAMILA FERREIRA AZEVEDO, UFV; MOYSÉS NASCIMENTO, UFV; FABYANO FONSECA E SILVA, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; ANA CAROLINA CAMPANA NASCIMENTO, UFV.COSTA, J. A. daAZEVEDO, C. F.NASCIMENTO, M.SILVA, F. F.RESENDE, M. D. V. deNASCIMENTO, A. C. C.2022-01-19T18:00:33Z2022-01-19T18:00:33Z2022-01-192022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleScientia Agricola, v. 79, n. 6, p. 1-8, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139185https://doi.org/10.1590/1678-992X-2020-0397enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-01-19T18:00:43Zoai:www.alice.cnptia.embrapa.br:doc/1139185Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-01-19T18:00:43Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Determination of optimal number of independent components in yield traits in rice.
title Determination of optimal number of independent components in yield traits in rice.
spellingShingle Determination of optimal number of independent components in yield traits in rice.
COSTA, J. A. da
Melhoramento Genético Vegetal
Produtividade
Arroz
Genomics
Plant breeding
Yields
Rice
title_short Determination of optimal number of independent components in yield traits in rice.
title_full Determination of optimal number of independent components in yield traits in rice.
title_fullStr Determination of optimal number of independent components in yield traits in rice.
title_full_unstemmed Determination of optimal number of independent components in yield traits in rice.
title_sort Determination of optimal number of independent components in yield traits in rice.
author COSTA, J. A. da
author_facet COSTA, J. A. da
AZEVEDO, C. F.
NASCIMENTO, M.
SILVA, F. F.
RESENDE, M. D. V. de
NASCIMENTO, A. C. C.
author_role author
author2 AZEVEDO, C. F.
NASCIMENTO, M.
SILVA, F. F.
RESENDE, M. D. V. de
NASCIMENTO, A. C. C.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv JAQUICELE APARECIDA DA COSTA, UFV; CAMILA FERREIRA AZEVEDO, UFV; MOYSÉS NASCIMENTO, UFV; FABYANO FONSECA E SILVA, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; ANA CAROLINA CAMPANA NASCIMENTO, UFV.
dc.contributor.author.fl_str_mv COSTA, J. A. da
AZEVEDO, C. F.
NASCIMENTO, M.
SILVA, F. F.
RESENDE, M. D. V. de
NASCIMENTO, A. C. C.
dc.subject.por.fl_str_mv Melhoramento Genético Vegetal
Produtividade
Arroz
Genomics
Plant breeding
Yields
Rice
topic Melhoramento Genético Vegetal
Produtividade
Arroz
Genomics
Plant breeding
Yields
Rice
description The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-19T18:00:33Z
2022-01-19T18:00:33Z
2022-01-19
2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Scientia Agricola, v. 79, n. 6, p. 1-8, 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139185
https://doi.org/10.1590/1678-992X-2020-0397
identifier_str_mv Scientia Agricola, v. 79, n. 6, p. 1-8, 2022.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139185
https://doi.org/10.1590/1678-992X-2020-0397
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695627464671232