Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.

Detalhes bibliográficos
Autor(a) principal: RESENDE, M. D. V. de
Data de Publicação: 2020
Outros Autores: ALVES, R. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129637
http://dx.doi.org/10.35418/2526-4117/v2n2a1
Resumo: This paper presents the state of the art of the statistical modelling as applied to plant breeding. Classes of inference, statistical models, estimation methods and model selection are emphasized in a practical way. Restricted Maximum Likelihood (REML), Hierarchical Maximum Likelihood (HIML) and Bayesian (BAYES) are highlighted. Distributions of data and effects, and dimension and structure of the models are considered for model selection and parameters estimation. Theory and practical examples referring to selection between models with different fixed effects factors are given using the Full Maximum Likelihood (FML). An analytical FML way of defining random or fixed effects is presented to avoid the subjective or conceptual usual definitions. Examples of the applications of the Hierarchical Maximum Likelihood/Hierarchical Generalized Best Linear Unbiased Prediction (HIML/HG-BLUP) procedure are also presented. Sample sizes for achieving high experimental quality and accuracy are indicated and simple interpretation of the estimates of key genetic parameters are given. Phenomics and genomics are approached. Maximum accuracy under the truest model is the key for achieving efficacy in plant breeding programs.
id EMBR_32c43a3eecec8d50b7e89db69af9b87e
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1129637
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.Método EstatísticoMelhoramento Genético VegetalPlant breedingStatistical modelsThis paper presents the state of the art of the statistical modelling as applied to plant breeding. Classes of inference, statistical models, estimation methods and model selection are emphasized in a practical way. Restricted Maximum Likelihood (REML), Hierarchical Maximum Likelihood (HIML) and Bayesian (BAYES) are highlighted. Distributions of data and effects, and dimension and structure of the models are considered for model selection and parameters estimation. Theory and practical examples referring to selection between models with different fixed effects factors are given using the Full Maximum Likelihood (FML). An analytical FML way of defining random or fixed effects is presented to avoid the subjective or conceptual usual definitions. Examples of the applications of the Hierarchical Maximum Likelihood/Hierarchical Generalized Best Linear Unbiased Prediction (HIML/HG-BLUP) procedure are also presented. Sample sizes for achieving high experimental quality and accuracy are indicated and simple interpretation of the estimates of key genetic parameters are given. Phenomics and genomics are approached. Maximum accuracy under the truest model is the key for achieving efficacy in plant breeding programs.MARCOS DEON VILELA DE RESENDE, CNPCa; RODRIGO SILVA ALVES, UFV.RESENDE, M. D. V. deALVES, R. S.2021-01-28T20:32:18Z2021-01-28T20:32:18Z2021-01-282020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFunctional Plant Breeding Journal, v. 2, n. 2, jul./dez., 2020. p. 1-31.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129637http://dx.doi.org/10.35418/2526-4117/v2n2a1enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-01-28T20:32:31Zoai:www.alice.cnptia.embrapa.br:doc/1129637Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542021-01-28T20:32:31falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-01-28T20:32:31Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.
title Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.
spellingShingle Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.
RESENDE, M. D. V. de
Método Estatístico
Melhoramento Genético Vegetal
Plant breeding
Statistical models
title_short Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.
title_full Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.
title_fullStr Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.
title_full_unstemmed Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.
title_sort Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.
author RESENDE, M. D. V. de
author_facet RESENDE, M. D. V. de
ALVES, R. S.
author_role author
author2 ALVES, R. S.
author2_role author
dc.contributor.none.fl_str_mv MARCOS DEON VILELA DE RESENDE, CNPCa; RODRIGO SILVA ALVES, UFV.
dc.contributor.author.fl_str_mv RESENDE, M. D. V. de
ALVES, R. S.
dc.subject.por.fl_str_mv Método Estatístico
Melhoramento Genético Vegetal
Plant breeding
Statistical models
topic Método Estatístico
Melhoramento Genético Vegetal
Plant breeding
Statistical models
description This paper presents the state of the art of the statistical modelling as applied to plant breeding. Classes of inference, statistical models, estimation methods and model selection are emphasized in a practical way. Restricted Maximum Likelihood (REML), Hierarchical Maximum Likelihood (HIML) and Bayesian (BAYES) are highlighted. Distributions of data and effects, and dimension and structure of the models are considered for model selection and parameters estimation. Theory and practical examples referring to selection between models with different fixed effects factors are given using the Full Maximum Likelihood (FML). An analytical FML way of defining random or fixed effects is presented to avoid the subjective or conceptual usual definitions. Examples of the applications of the Hierarchical Maximum Likelihood/Hierarchical Generalized Best Linear Unbiased Prediction (HIML/HG-BLUP) procedure are also presented. Sample sizes for achieving high experimental quality and accuracy are indicated and simple interpretation of the estimates of key genetic parameters are given. Phenomics and genomics are approached. Maximum accuracy under the truest model is the key for achieving efficacy in plant breeding programs.
publishDate 2020
dc.date.none.fl_str_mv 2020
2021-01-28T20:32:18Z
2021-01-28T20:32:18Z
2021-01-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Functional Plant Breeding Journal, v. 2, n. 2, jul./dez., 2020. p. 1-31.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129637
http://dx.doi.org/10.35418/2526-4117/v2n2a1
identifier_str_mv Functional Plant Breeding Journal, v. 2, n. 2, jul./dez., 2020. p. 1-31.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129637
http://dx.doi.org/10.35418/2526-4117/v2n2a1
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503501819150336