Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129637 http://dx.doi.org/10.35418/2526-4117/v2n2a1 |
Resumo: | This paper presents the state of the art of the statistical modelling as applied to plant breeding. Classes of inference, statistical models, estimation methods and model selection are emphasized in a practical way. Restricted Maximum Likelihood (REML), Hierarchical Maximum Likelihood (HIML) and Bayesian (BAYES) are highlighted. Distributions of data and effects, and dimension and structure of the models are considered for model selection and parameters estimation. Theory and practical examples referring to selection between models with different fixed effects factors are given using the Full Maximum Likelihood (FML). An analytical FML way of defining random or fixed effects is presented to avoid the subjective or conceptual usual definitions. Examples of the applications of the Hierarchical Maximum Likelihood/Hierarchical Generalized Best Linear Unbiased Prediction (HIML/HG-BLUP) procedure are also presented. Sample sizes for achieving high experimental quality and accuracy are indicated and simple interpretation of the estimates of key genetic parameters are given. Phenomics and genomics are approached. Maximum accuracy under the truest model is the key for achieving efficacy in plant breeding programs. |
id |
EMBR_32c43a3eecec8d50b7e89db69af9b87e |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1129637 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding.Método EstatísticoMelhoramento Genético VegetalPlant breedingStatistical modelsThis paper presents the state of the art of the statistical modelling as applied to plant breeding. Classes of inference, statistical models, estimation methods and model selection are emphasized in a practical way. Restricted Maximum Likelihood (REML), Hierarchical Maximum Likelihood (HIML) and Bayesian (BAYES) are highlighted. Distributions of data and effects, and dimension and structure of the models are considered for model selection and parameters estimation. Theory and practical examples referring to selection between models with different fixed effects factors are given using the Full Maximum Likelihood (FML). An analytical FML way of defining random or fixed effects is presented to avoid the subjective or conceptual usual definitions. Examples of the applications of the Hierarchical Maximum Likelihood/Hierarchical Generalized Best Linear Unbiased Prediction (HIML/HG-BLUP) procedure are also presented. Sample sizes for achieving high experimental quality and accuracy are indicated and simple interpretation of the estimates of key genetic parameters are given. Phenomics and genomics are approached. Maximum accuracy under the truest model is the key for achieving efficacy in plant breeding programs.MARCOS DEON VILELA DE RESENDE, CNPCa; RODRIGO SILVA ALVES, UFV.RESENDE, M. D. V. deALVES, R. S.2021-01-28T20:32:18Z2021-01-28T20:32:18Z2021-01-282020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFunctional Plant Breeding Journal, v. 2, n. 2, jul./dez., 2020. p. 1-31.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129637http://dx.doi.org/10.35418/2526-4117/v2n2a1enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-01-28T20:32:31Zoai:www.alice.cnptia.embrapa.br:doc/1129637Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542021-01-28T20:32:31falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-01-28T20:32:31Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. |
title |
Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. |
spellingShingle |
Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. RESENDE, M. D. V. de Método Estatístico Melhoramento Genético Vegetal Plant breeding Statistical models |
title_short |
Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. |
title_full |
Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. |
title_fullStr |
Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. |
title_full_unstemmed |
Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. |
title_sort |
Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. |
author |
RESENDE, M. D. V. de |
author_facet |
RESENDE, M. D. V. de ALVES, R. S. |
author_role |
author |
author2 |
ALVES, R. S. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
MARCOS DEON VILELA DE RESENDE, CNPCa; RODRIGO SILVA ALVES, UFV. |
dc.contributor.author.fl_str_mv |
RESENDE, M. D. V. de ALVES, R. S. |
dc.subject.por.fl_str_mv |
Método Estatístico Melhoramento Genético Vegetal Plant breeding Statistical models |
topic |
Método Estatístico Melhoramento Genético Vegetal Plant breeding Statistical models |
description |
This paper presents the state of the art of the statistical modelling as applied to plant breeding. Classes of inference, statistical models, estimation methods and model selection are emphasized in a practical way. Restricted Maximum Likelihood (REML), Hierarchical Maximum Likelihood (HIML) and Bayesian (BAYES) are highlighted. Distributions of data and effects, and dimension and structure of the models are considered for model selection and parameters estimation. Theory and practical examples referring to selection between models with different fixed effects factors are given using the Full Maximum Likelihood (FML). An analytical FML way of defining random or fixed effects is presented to avoid the subjective or conceptual usual definitions. Examples of the applications of the Hierarchical Maximum Likelihood/Hierarchical Generalized Best Linear Unbiased Prediction (HIML/HG-BLUP) procedure are also presented. Sample sizes for achieving high experimental quality and accuracy are indicated and simple interpretation of the estimates of key genetic parameters are given. Phenomics and genomics are approached. Maximum accuracy under the truest model is the key for achieving efficacy in plant breeding programs. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2021-01-28T20:32:18Z 2021-01-28T20:32:18Z 2021-01-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Functional Plant Breeding Journal, v. 2, n. 2, jul./dez., 2020. p. 1-31. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129637 http://dx.doi.org/10.35418/2526-4117/v2n2a1 |
identifier_str_mv |
Functional Plant Breeding Journal, v. 2, n. 2, jul./dez., 2020. p. 1-31. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129637 http://dx.doi.org/10.35418/2526-4117/v2n2a1 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503501819150336 |