Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.

Detalhes bibliográficos
Autor(a) principal: PARREIRAS, T. C.
Data de Publicação: 2022
Outros Autores: BOLFE, E. L., CHAVES, M. E. D., DEL'ARCO SANCHES, I., SANO, E. E., VICTORIA, D. de C., BETTIOL, G. M., VICENTE, L. E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145300
https://doi.org/10.3390/rs14153736
Resumo: Abstract. The Brazilian Savanna presents a complex agricultural dynamic and cloud cover issues; therefore, there is a need for new strategies for more detailed agricultural monitoring. Using a hierarchical classification system, we explored the Harmonized Landsat Sentinel-2 (HLS) dataset to detect soybean in western Bahia, Brazil. Multispectral bands (MS) and vegetation indices (VIs) from October 2021 to March 2022 were used as variables to feed Random Forest models, and the performances of the complete HLS time-series, HLSS30 (harmonized Sentinel), HLSL30 (harmonized Landsat), and Landsat 8 OLI (L8) were compared. At Level 1 (agricultural areas × native vegetation), HLS, HLSS30, and L8 produced identical models using MS + VIs, with 0.959 overall accuracies (OA) and Kappa of 0.917. At Level 2 (annual crops × perennial crops × pasturelands), HLS and L8 achieved an OA of 0.935 and Kappa > 0.89 using only VIs. At Level 3 (soybean × other annual crops), the HLS MS + VIs model achieved the best performance, with OA of 0.913 and Kappa of 0.808. Our results demonstrated the potential of the new HLS dataset for medium-resolution mapping initiatives at the crop level, which can impact decision-making processes involving large-scale soybean production and agricultural sustainability.
id EMBR_3b786bffd6a064ab61f7d61886cae3a3
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1145300
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.Monitoramento agrícolaMultisensorHarmonized Landsat Sentinel-2HLSAgriculture monitoringSojaCerradoSensoriamento RemotoGlycine MaxSoybeansAgricultureRemote sensingAbstract. The Brazilian Savanna presents a complex agricultural dynamic and cloud cover issues; therefore, there is a need for new strategies for more detailed agricultural monitoring. Using a hierarchical classification system, we explored the Harmonized Landsat Sentinel-2 (HLS) dataset to detect soybean in western Bahia, Brazil. Multispectral bands (MS) and vegetation indices (VIs) from October 2021 to March 2022 were used as variables to feed Random Forest models, and the performances of the complete HLS time-series, HLSS30 (harmonized Sentinel), HLSL30 (harmonized Landsat), and Landsat 8 OLI (L8) were compared. At Level 1 (agricultural areas × native vegetation), HLS, HLSS30, and L8 produced identical models using MS + VIs, with 0.959 overall accuracies (OA) and Kappa of 0.917. At Level 2 (annual crops × perennial crops × pasturelands), HLS and L8 achieved an OA of 0.935 and Kappa > 0.89 using only VIs. At Level 3 (soybean × other annual crops), the HLS MS + VIs model achieved the best performance, with OA of 0.913 and Kappa of 0.808. Our results demonstrated the potential of the new HLS dataset for medium-resolution mapping initiatives at the crop level, which can impact decision-making processes involving large-scale soybean production and agricultural sustainability.TAYA CRISTO PARREIRAS, IG/UNICAMP; EDSON LUIS BOLFE, CNPTIA, IG/UNICAMP; MICHEL EUSTÁQUIO DANTAS CHAVES, INPE; IARA DEL´ARCO SANCHES, INPE; EDSON EYJI SANO, CPAC; DANIEL DE CASTRO VICTORIA, CNPTIA; GIOVANA MARANHAO BETTIOL, CPAC; LUIZ EDUARDO VICENTE, CNPMA.PARREIRAS, T. C.BOLFE, E. L.CHAVES, M. E. D.DEL'ARCO SANCHES, I.SANO, E. E.VICTORIA, D. de C.BETTIOL, G. M.VICENTE, L. E.2022-08-05T20:20:15Z2022-08-05T20:20:15Z2022-08-052022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRemote Sensing, v. 14, n. 15, 3736, Aug. 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145300https://doi.org/10.3390/rs14153736enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-08-05T20:20:24Zoai:www.alice.cnptia.embrapa.br:doc/1145300Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-08-05T20:20:24falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-08-05T20:20:24Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.
title Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.
spellingShingle Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.
PARREIRAS, T. C.
Monitoramento agrícola
Multisensor
Harmonized Landsat Sentinel-2
HLS
Agriculture monitoring
Soja
Cerrado
Sensoriamento Remoto
Glycine Max
Soybeans
Agriculture
Remote sensing
title_short Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.
title_full Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.
title_fullStr Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.
title_full_unstemmed Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.
title_sort Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.
author PARREIRAS, T. C.
author_facet PARREIRAS, T. C.
BOLFE, E. L.
CHAVES, M. E. D.
DEL'ARCO SANCHES, I.
SANO, E. E.
VICTORIA, D. de C.
BETTIOL, G. M.
VICENTE, L. E.
author_role author
author2 BOLFE, E. L.
CHAVES, M. E. D.
DEL'ARCO SANCHES, I.
SANO, E. E.
VICTORIA, D. de C.
BETTIOL, G. M.
VICENTE, L. E.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv TAYA CRISTO PARREIRAS, IG/UNICAMP; EDSON LUIS BOLFE, CNPTIA, IG/UNICAMP; MICHEL EUSTÁQUIO DANTAS CHAVES, INPE; IARA DEL´ARCO SANCHES, INPE; EDSON EYJI SANO, CPAC; DANIEL DE CASTRO VICTORIA, CNPTIA; GIOVANA MARANHAO BETTIOL, CPAC; LUIZ EDUARDO VICENTE, CNPMA.
dc.contributor.author.fl_str_mv PARREIRAS, T. C.
BOLFE, E. L.
CHAVES, M. E. D.
DEL'ARCO SANCHES, I.
SANO, E. E.
VICTORIA, D. de C.
BETTIOL, G. M.
VICENTE, L. E.
dc.subject.por.fl_str_mv Monitoramento agrícola
Multisensor
Harmonized Landsat Sentinel-2
HLS
Agriculture monitoring
Soja
Cerrado
Sensoriamento Remoto
Glycine Max
Soybeans
Agriculture
Remote sensing
topic Monitoramento agrícola
Multisensor
Harmonized Landsat Sentinel-2
HLS
Agriculture monitoring
Soja
Cerrado
Sensoriamento Remoto
Glycine Max
Soybeans
Agriculture
Remote sensing
description Abstract. The Brazilian Savanna presents a complex agricultural dynamic and cloud cover issues; therefore, there is a need for new strategies for more detailed agricultural monitoring. Using a hierarchical classification system, we explored the Harmonized Landsat Sentinel-2 (HLS) dataset to detect soybean in western Bahia, Brazil. Multispectral bands (MS) and vegetation indices (VIs) from October 2021 to March 2022 were used as variables to feed Random Forest models, and the performances of the complete HLS time-series, HLSS30 (harmonized Sentinel), HLSL30 (harmonized Landsat), and Landsat 8 OLI (L8) were compared. At Level 1 (agricultural areas × native vegetation), HLS, HLSS30, and L8 produced identical models using MS + VIs, with 0.959 overall accuracies (OA) and Kappa of 0.917. At Level 2 (annual crops × perennial crops × pasturelands), HLS and L8 achieved an OA of 0.935 and Kappa > 0.89 using only VIs. At Level 3 (soybean × other annual crops), the HLS MS + VIs model achieved the best performance, with OA of 0.913 and Kappa of 0.808. Our results demonstrated the potential of the new HLS dataset for medium-resolution mapping initiatives at the crop level, which can impact decision-making processes involving large-scale soybean production and agricultural sustainability.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-05T20:20:15Z
2022-08-05T20:20:15Z
2022-08-05
2022
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Remote Sensing, v. 14, n. 15, 3736, Aug. 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145300
https://doi.org/10.3390/rs14153736
identifier_str_mv Remote Sensing, v. 14, n. 15, 3736, Aug. 2022.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145300
https://doi.org/10.3390/rs14153736
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503527332052992