Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145300 https://doi.org/10.3390/rs14153736 |
Resumo: | Abstract. The Brazilian Savanna presents a complex agricultural dynamic and cloud cover issues; therefore, there is a need for new strategies for more detailed agricultural monitoring. Using a hierarchical classification system, we explored the Harmonized Landsat Sentinel-2 (HLS) dataset to detect soybean in western Bahia, Brazil. Multispectral bands (MS) and vegetation indices (VIs) from October 2021 to March 2022 were used as variables to feed Random Forest models, and the performances of the complete HLS time-series, HLSS30 (harmonized Sentinel), HLSL30 (harmonized Landsat), and Landsat 8 OLI (L8) were compared. At Level 1 (agricultural areas × native vegetation), HLS, HLSS30, and L8 produced identical models using MS + VIs, with 0.959 overall accuracies (OA) and Kappa of 0.917. At Level 2 (annual crops × perennial crops × pasturelands), HLS and L8 achieved an OA of 0.935 and Kappa > 0.89 using only VIs. At Level 3 (soybean × other annual crops), the HLS MS + VIs model achieved the best performance, with OA of 0.913 and Kappa of 0.808. Our results demonstrated the potential of the new HLS dataset for medium-resolution mapping initiatives at the crop level, which can impact decision-making processes involving large-scale soybean production and agricultural sustainability. |
id |
EMBR_3b786bffd6a064ab61f7d61886cae3a3 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1145300 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data.Monitoramento agrícolaMultisensorHarmonized Landsat Sentinel-2HLSAgriculture monitoringSojaCerradoSensoriamento RemotoGlycine MaxSoybeansAgricultureRemote sensingAbstract. The Brazilian Savanna presents a complex agricultural dynamic and cloud cover issues; therefore, there is a need for new strategies for more detailed agricultural monitoring. Using a hierarchical classification system, we explored the Harmonized Landsat Sentinel-2 (HLS) dataset to detect soybean in western Bahia, Brazil. Multispectral bands (MS) and vegetation indices (VIs) from October 2021 to March 2022 were used as variables to feed Random Forest models, and the performances of the complete HLS time-series, HLSS30 (harmonized Sentinel), HLSL30 (harmonized Landsat), and Landsat 8 OLI (L8) were compared. At Level 1 (agricultural areas × native vegetation), HLS, HLSS30, and L8 produced identical models using MS + VIs, with 0.959 overall accuracies (OA) and Kappa of 0.917. At Level 2 (annual crops × perennial crops × pasturelands), HLS and L8 achieved an OA of 0.935 and Kappa > 0.89 using only VIs. At Level 3 (soybean × other annual crops), the HLS MS + VIs model achieved the best performance, with OA of 0.913 and Kappa of 0.808. Our results demonstrated the potential of the new HLS dataset for medium-resolution mapping initiatives at the crop level, which can impact decision-making processes involving large-scale soybean production and agricultural sustainability.TAYA CRISTO PARREIRAS, IG/UNICAMP; EDSON LUIS BOLFE, CNPTIA, IG/UNICAMP; MICHEL EUSTÁQUIO DANTAS CHAVES, INPE; IARA DEL´ARCO SANCHES, INPE; EDSON EYJI SANO, CPAC; DANIEL DE CASTRO VICTORIA, CNPTIA; GIOVANA MARANHAO BETTIOL, CPAC; LUIZ EDUARDO VICENTE, CNPMA.PARREIRAS, T. C.BOLFE, E. L.CHAVES, M. E. D.DEL'ARCO SANCHES, I.SANO, E. E.VICTORIA, D. de C.BETTIOL, G. M.VICENTE, L. E.2022-08-05T20:20:15Z2022-08-05T20:20:15Z2022-08-052022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRemote Sensing, v. 14, n. 15, 3736, Aug. 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145300https://doi.org/10.3390/rs14153736enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-08-05T20:20:24Zoai:www.alice.cnptia.embrapa.br:doc/1145300Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-08-05T20:20:24falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-08-05T20:20:24Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data. |
title |
Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data. |
spellingShingle |
Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data. PARREIRAS, T. C. Monitoramento agrícola Multisensor Harmonized Landsat Sentinel-2 HLS Agriculture monitoring Soja Cerrado Sensoriamento Remoto Glycine Max Soybeans Agriculture Remote sensing |
title_short |
Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data. |
title_full |
Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data. |
title_fullStr |
Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data. |
title_full_unstemmed |
Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data. |
title_sort |
Hierarchical classification of soybean in the Brazilian Savanna based on Harmonized Landsat Sentinel data. |
author |
PARREIRAS, T. C. |
author_facet |
PARREIRAS, T. C. BOLFE, E. L. CHAVES, M. E. D. DEL'ARCO SANCHES, I. SANO, E. E. VICTORIA, D. de C. BETTIOL, G. M. VICENTE, L. E. |
author_role |
author |
author2 |
BOLFE, E. L. CHAVES, M. E. D. DEL'ARCO SANCHES, I. SANO, E. E. VICTORIA, D. de C. BETTIOL, G. M. VICENTE, L. E. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
TAYA CRISTO PARREIRAS, IG/UNICAMP; EDSON LUIS BOLFE, CNPTIA, IG/UNICAMP; MICHEL EUSTÁQUIO DANTAS CHAVES, INPE; IARA DEL´ARCO SANCHES, INPE; EDSON EYJI SANO, CPAC; DANIEL DE CASTRO VICTORIA, CNPTIA; GIOVANA MARANHAO BETTIOL, CPAC; LUIZ EDUARDO VICENTE, CNPMA. |
dc.contributor.author.fl_str_mv |
PARREIRAS, T. C. BOLFE, E. L. CHAVES, M. E. D. DEL'ARCO SANCHES, I. SANO, E. E. VICTORIA, D. de C. BETTIOL, G. M. VICENTE, L. E. |
dc.subject.por.fl_str_mv |
Monitoramento agrícola Multisensor Harmonized Landsat Sentinel-2 HLS Agriculture monitoring Soja Cerrado Sensoriamento Remoto Glycine Max Soybeans Agriculture Remote sensing |
topic |
Monitoramento agrícola Multisensor Harmonized Landsat Sentinel-2 HLS Agriculture monitoring Soja Cerrado Sensoriamento Remoto Glycine Max Soybeans Agriculture Remote sensing |
description |
Abstract. The Brazilian Savanna presents a complex agricultural dynamic and cloud cover issues; therefore, there is a need for new strategies for more detailed agricultural monitoring. Using a hierarchical classification system, we explored the Harmonized Landsat Sentinel-2 (HLS) dataset to detect soybean in western Bahia, Brazil. Multispectral bands (MS) and vegetation indices (VIs) from October 2021 to March 2022 were used as variables to feed Random Forest models, and the performances of the complete HLS time-series, HLSS30 (harmonized Sentinel), HLSL30 (harmonized Landsat), and Landsat 8 OLI (L8) were compared. At Level 1 (agricultural areas × native vegetation), HLS, HLSS30, and L8 produced identical models using MS + VIs, with 0.959 overall accuracies (OA) and Kappa of 0.917. At Level 2 (annual crops × perennial crops × pasturelands), HLS and L8 achieved an OA of 0.935 and Kappa > 0.89 using only VIs. At Level 3 (soybean × other annual crops), the HLS MS + VIs model achieved the best performance, with OA of 0.913 and Kappa of 0.808. Our results demonstrated the potential of the new HLS dataset for medium-resolution mapping initiatives at the crop level, which can impact decision-making processes involving large-scale soybean production and agricultural sustainability. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-05T20:20:15Z 2022-08-05T20:20:15Z 2022-08-05 2022 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Remote Sensing, v. 14, n. 15, 3736, Aug. 2022. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145300 https://doi.org/10.3390/rs14153736 |
identifier_str_mv |
Remote Sensing, v. 14, n. 15, 3736, Aug. 2022. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145300 https://doi.org/10.3390/rs14153736 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503527332052992 |