Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.

Detalhes bibliográficos
Autor(a) principal: BOLFE, E. L.
Data de Publicação: 2023
Outros Autores: PARREIRAS, T. C., SILVA, L. A. P. da, SANO, E. E., BETTIOL, G. M., VICTORIA, D. de C., DEL'ARCO SANCHES, I., VICENTE, L. E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1155214
https://doi.org/10.3390/ijgi12070263
Resumo: Agricultural intensification practices have been adopted in the Brazilian savanna (Cerrado), mainly in the transition between Cerrado and the Amazon Forest, to increase productivity while reducing pressure for new land clearing. Due to the growing demand for more sustainable practices, more accurate information on geospatial monitoring is required. Remote sensing products and artificial intelligence models for pixel-by-pixel classification have great potential. Therefore, we developed a methodological framework with spectral indices (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Soil-Adjusted Vegetation Index (SAVI)) derived from the Harmonized Landsat Sentinel-2 (HLS) and machine learning algorithms (Random Forest (RF), Artificial Neural Networks (ANNs), and Extreme Gradient Boosting (XGBoost)) to map agricultural intensification considering three hierarchical levels, i.e., temporary crops (level 1), the number of crop cycles (level 2), and the crop types from the second season in double-crop systems (level 3) in the 2021-2022 crop growing season in the municipality of Sorriso, Mato Grosso State, Brazil. All models were statistically similar, with an overall accuracy between 85 and 99%. The NDVI was the most suitable index for discriminating cultures at all hierarchical levels. The RF-NDVI combination mapped best at level 1, while at levels 2 and 3, the best model was XGBoost-NDVI. Our results indicate the great potential of combining HLS data and machine learning to provide accurate geospatial information for decision-makers in monitoring agricultural intensification, with an aim toward the sustainable development of agriculture.
id EMBR_725c611799c9fbdae3f2cebecce43cbc
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1155214
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.MultisensorInteligência artificialAprendizado de máquinaIntensificação agrícolaMapeamento agrícolaHarmonized Landsat Sentinel-2HLSMachine learningAgricultural IntensificationAgriculturaSensoriamento RemotoCerradoAgricultureRemote sensingArtificial intelligenceAgricultural intensification practices have been adopted in the Brazilian savanna (Cerrado), mainly in the transition between Cerrado and the Amazon Forest, to increase productivity while reducing pressure for new land clearing. Due to the growing demand for more sustainable practices, more accurate information on geospatial monitoring is required. Remote sensing products and artificial intelligence models for pixel-by-pixel classification have great potential. Therefore, we developed a methodological framework with spectral indices (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Soil-Adjusted Vegetation Index (SAVI)) derived from the Harmonized Landsat Sentinel-2 (HLS) and machine learning algorithms (Random Forest (RF), Artificial Neural Networks (ANNs), and Extreme Gradient Boosting (XGBoost)) to map agricultural intensification considering three hierarchical levels, i.e., temporary crops (level 1), the number of crop cycles (level 2), and the crop types from the second season in double-crop systems (level 3) in the 2021-2022 crop growing season in the municipality of Sorriso, Mato Grosso State, Brazil. All models were statistically similar, with an overall accuracy between 85 and 99%. The NDVI was the most suitable index for discriminating cultures at all hierarchical levels. The RF-NDVI combination mapped best at level 1, while at levels 2 and 3, the best model was XGBoost-NDVI. Our results indicate the great potential of combining HLS data and machine learning to provide accurate geospatial information for decision-makers in monitoring agricultural intensification, with an aim toward the sustainable development of agriculture.EDSON LUIS BOLFE, CNPTIA; TAYA CRISTO PARREIRAS, UNIVERSIDADE ESTADUAL DE CAMPINAS; LUCAS AUGUSTO PEREIRA DA SILVA, Universidade Federal de Uberlândia; EDSON EYJI SANO, CPAC; GIOVANA MARANHAO BETTIOL, CPAC; DANIEL DE CASTRO VICTORIA, CNPTIA; IARA DEL´ARCO SANCHES, INSTITUTO DE PESQUISAS ESPACIAIS; LUIZ EDUARDO VICENTE, CNPMA.BOLFE, E. L.PARREIRAS, T. C.SILVA, L. A. P. daSANO, E. E.BETTIOL, G. M.VICTORIA, D. de C.DEL'ARCO SANCHES, I.VICENTE, L. E.2023-07-24T15:23:23Z2023-07-24T15:23:23Z2023-07-242023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleISPRS International Journal of Geo-Information, v. 12, n. 7, 263, July 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1155214https://doi.org/10.3390/ijgi12070263enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-07-24T15:23:23Zoai:www.alice.cnptia.embrapa.br:doc/1155214Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-07-24T15:23:23falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-07-24T15:23:23Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.
title Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.
spellingShingle Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.
BOLFE, E. L.
Multisensor
Inteligência artificial
Aprendizado de máquina
Intensificação agrícola
Mapeamento agrícola
Harmonized Landsat Sentinel-2
HLS
Machine learning
Agricultural Intensification
Agricultura
Sensoriamento Remoto
Cerrado
Agriculture
Remote sensing
Artificial intelligence
title_short Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.
title_full Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.
title_fullStr Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.
title_full_unstemmed Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.
title_sort Mapping agricultural intensification in the Brazilian savanna: a machine learning approach using harmonized data from Landsat Sentinel-2.
author BOLFE, E. L.
author_facet BOLFE, E. L.
PARREIRAS, T. C.
SILVA, L. A. P. da
SANO, E. E.
BETTIOL, G. M.
VICTORIA, D. de C.
DEL'ARCO SANCHES, I.
VICENTE, L. E.
author_role author
author2 PARREIRAS, T. C.
SILVA, L. A. P. da
SANO, E. E.
BETTIOL, G. M.
VICTORIA, D. de C.
DEL'ARCO SANCHES, I.
VICENTE, L. E.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv EDSON LUIS BOLFE, CNPTIA; TAYA CRISTO PARREIRAS, UNIVERSIDADE ESTADUAL DE CAMPINAS; LUCAS AUGUSTO PEREIRA DA SILVA, Universidade Federal de Uberlândia; EDSON EYJI SANO, CPAC; GIOVANA MARANHAO BETTIOL, CPAC; DANIEL DE CASTRO VICTORIA, CNPTIA; IARA DEL´ARCO SANCHES, INSTITUTO DE PESQUISAS ESPACIAIS; LUIZ EDUARDO VICENTE, CNPMA.
dc.contributor.author.fl_str_mv BOLFE, E. L.
PARREIRAS, T. C.
SILVA, L. A. P. da
SANO, E. E.
BETTIOL, G. M.
VICTORIA, D. de C.
DEL'ARCO SANCHES, I.
VICENTE, L. E.
dc.subject.por.fl_str_mv Multisensor
Inteligência artificial
Aprendizado de máquina
Intensificação agrícola
Mapeamento agrícola
Harmonized Landsat Sentinel-2
HLS
Machine learning
Agricultural Intensification
Agricultura
Sensoriamento Remoto
Cerrado
Agriculture
Remote sensing
Artificial intelligence
topic Multisensor
Inteligência artificial
Aprendizado de máquina
Intensificação agrícola
Mapeamento agrícola
Harmonized Landsat Sentinel-2
HLS
Machine learning
Agricultural Intensification
Agricultura
Sensoriamento Remoto
Cerrado
Agriculture
Remote sensing
Artificial intelligence
description Agricultural intensification practices have been adopted in the Brazilian savanna (Cerrado), mainly in the transition between Cerrado and the Amazon Forest, to increase productivity while reducing pressure for new land clearing. Due to the growing demand for more sustainable practices, more accurate information on geospatial monitoring is required. Remote sensing products and artificial intelligence models for pixel-by-pixel classification have great potential. Therefore, we developed a methodological framework with spectral indices (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Soil-Adjusted Vegetation Index (SAVI)) derived from the Harmonized Landsat Sentinel-2 (HLS) and machine learning algorithms (Random Forest (RF), Artificial Neural Networks (ANNs), and Extreme Gradient Boosting (XGBoost)) to map agricultural intensification considering three hierarchical levels, i.e., temporary crops (level 1), the number of crop cycles (level 2), and the crop types from the second season in double-crop systems (level 3) in the 2021-2022 crop growing season in the municipality of Sorriso, Mato Grosso State, Brazil. All models were statistically similar, with an overall accuracy between 85 and 99%. The NDVI was the most suitable index for discriminating cultures at all hierarchical levels. The RF-NDVI combination mapped best at level 1, while at levels 2 and 3, the best model was XGBoost-NDVI. Our results indicate the great potential of combining HLS data and machine learning to provide accurate geospatial information for decision-makers in monitoring agricultural intensification, with an aim toward the sustainable development of agriculture.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-24T15:23:23Z
2023-07-24T15:23:23Z
2023-07-24
2023
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv ISPRS International Journal of Geo-Information, v. 12, n. 7, 263, July 2023.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1155214
https://doi.org/10.3390/ijgi12070263
identifier_str_mv ISPRS International Journal of Geo-Information, v. 12, n. 7, 263, July 2023.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1155214
https://doi.org/10.3390/ijgi12070263
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503547429060608