Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.

Detalhes bibliográficos
Autor(a) principal: PARREIRAS, T. C.
Data de Publicação: 2022
Outros Autores: BOLFE, E. L., SANO, E. E., VICTORIA, D. de C., SANCHES, I. D., VICENTE, L. E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143597
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-967-2022
Resumo: ABSTRACT: Brazil has established itself as one of the world leaders in food production. Different types of remote sensing mapping techniques have been undertaken to support rural planning in the country. However, due to the complex dynamics of Brazilian agriculture, especially in the Cerrado biome (tropical savanna), there is a need for more feasible crop discrimination and monitoring initiatives, which require a consistent time series of remote sensing data at medium meter and potentially up to 3 day Landsat 8 and Sentinel-2 satellite time series, minimizing the cloud cover limitations for rainfed agricultural monitoring. This paper aims to explore the potential of the Harmonized Landsat 8 Sentinel-2 (HLS) data cube to map agricultural landscapes in the Brazilian Cerrado. The HLS multispectral bands from 27 scenes with less than 10% cloud cover, from October 2020 to September 2021, encompassing one entire crop growing season, were processed by the Random Forest algorithm to produce a map with four land use/cover classes (annual crops, sugarcane, renovated sugarcane fields, cultivated pastures, and native Cerrado). We performed accuracy assessment through 10-fold cross-validation and confusion matrix analyses. The results showed a high level of overall accuracy and Kappa coefficient, both with 99%, as well as high user's and producer's accuracies of at least 99%. The HLS dataset has been continuously improved, showing very promising results for rainfed agricultural mapping and monitoring.
id EMBR_2f6236cb83beee10c5a6e81e8b0e6e6c
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1143597
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.Agricultura brasileiraBioma CerradoCerrado BiomeHarmonized Landsat SentinelRandom ForestAgriculturaSensoriamento RemotoAgricultureRemote sensingClassificationLand classificationABSTRACT: Brazil has established itself as one of the world leaders in food production. Different types of remote sensing mapping techniques have been undertaken to support rural planning in the country. However, due to the complex dynamics of Brazilian agriculture, especially in the Cerrado biome (tropical savanna), there is a need for more feasible crop discrimination and monitoring initiatives, which require a consistent time series of remote sensing data at medium meter and potentially up to 3 day Landsat 8 and Sentinel-2 satellite time series, minimizing the cloud cover limitations for rainfed agricultural monitoring. This paper aims to explore the potential of the Harmonized Landsat 8 Sentinel-2 (HLS) data cube to map agricultural landscapes in the Brazilian Cerrado. The HLS multispectral bands from 27 scenes with less than 10% cloud cover, from October 2020 to September 2021, encompassing one entire crop growing season, were processed by the Random Forest algorithm to produce a map with four land use/cover classes (annual crops, sugarcane, renovated sugarcane fields, cultivated pastures, and native Cerrado). We performed accuracy assessment through 10-fold cross-validation and confusion matrix analyses. The results showed a high level of overall accuracy and Kappa coefficient, both with 99%, as well as high user's and producer's accuracies of at least 99%. The HLS dataset has been continuously improved, showing very promising results for rainfed agricultural mapping and monitoring.Edition of proceedings of the 2022 edition of the XXIVth ISPRS Congress, Nice, France. Na publicação: E. S. Sano.T. C. PARREIRAS, IG/UNICAMP; EDSON LUIS BOLFE, CNPTIA, IG/UNICAMP; EDSON EYJI SANO, CPAC; DANIEL DE CASTRO VICTORIA, CNPTIA; I. D. SANCHES, INPE; LUIZ EDUARDO VICENTE, CNPMA.PARREIRAS, T. C.BOLFE, E. L.SANO, E. E.VICTORIA, D. de C.SANCHES, I. D.VICENTE, L. E.2022-06-01T12:20:31Z2022-06-01T12:20:31Z2022-06-012022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 967-973, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143597https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-967-2022enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-06-01T12:20:40Zoai:www.alice.cnptia.embrapa.br:doc/1143597Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-06-01T12:20:40falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-06-01T12:20:40Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.
title Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.
spellingShingle Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.
PARREIRAS, T. C.
Agricultura brasileira
Bioma Cerrado
Cerrado Biome
Harmonized Landsat Sentinel
Random Forest
Agricultura
Sensoriamento Remoto
Agriculture
Remote sensing
Classification
Land classification
title_short Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.
title_full Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.
title_fullStr Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.
title_full_unstemmed Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.
title_sort Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna.
author PARREIRAS, T. C.
author_facet PARREIRAS, T. C.
BOLFE, E. L.
SANO, E. E.
VICTORIA, D. de C.
SANCHES, I. D.
VICENTE, L. E.
author_role author
author2 BOLFE, E. L.
SANO, E. E.
VICTORIA, D. de C.
SANCHES, I. D.
VICENTE, L. E.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv T. C. PARREIRAS, IG/UNICAMP; EDSON LUIS BOLFE, CNPTIA, IG/UNICAMP; EDSON EYJI SANO, CPAC; DANIEL DE CASTRO VICTORIA, CNPTIA; I. D. SANCHES, INPE; LUIZ EDUARDO VICENTE, CNPMA.
dc.contributor.author.fl_str_mv PARREIRAS, T. C.
BOLFE, E. L.
SANO, E. E.
VICTORIA, D. de C.
SANCHES, I. D.
VICENTE, L. E.
dc.subject.por.fl_str_mv Agricultura brasileira
Bioma Cerrado
Cerrado Biome
Harmonized Landsat Sentinel
Random Forest
Agricultura
Sensoriamento Remoto
Agriculture
Remote sensing
Classification
Land classification
topic Agricultura brasileira
Bioma Cerrado
Cerrado Biome
Harmonized Landsat Sentinel
Random Forest
Agricultura
Sensoriamento Remoto
Agriculture
Remote sensing
Classification
Land classification
description ABSTRACT: Brazil has established itself as one of the world leaders in food production. Different types of remote sensing mapping techniques have been undertaken to support rural planning in the country. However, due to the complex dynamics of Brazilian agriculture, especially in the Cerrado biome (tropical savanna), there is a need for more feasible crop discrimination and monitoring initiatives, which require a consistent time series of remote sensing data at medium meter and potentially up to 3 day Landsat 8 and Sentinel-2 satellite time series, minimizing the cloud cover limitations for rainfed agricultural monitoring. This paper aims to explore the potential of the Harmonized Landsat 8 Sentinel-2 (HLS) data cube to map agricultural landscapes in the Brazilian Cerrado. The HLS multispectral bands from 27 scenes with less than 10% cloud cover, from October 2020 to September 2021, encompassing one entire crop growing season, were processed by the Random Forest algorithm to produce a map with four land use/cover classes (annual crops, sugarcane, renovated sugarcane fields, cultivated pastures, and native Cerrado). We performed accuracy assessment through 10-fold cross-validation and confusion matrix analyses. The results showed a high level of overall accuracy and Kappa coefficient, both with 99%, as well as high user's and producer's accuracies of at least 99%. The HLS dataset has been continuously improved, showing very promising results for rainfed agricultural mapping and monitoring.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-01T12:20:31Z
2022-06-01T12:20:31Z
2022-06-01
2022
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 967-973, 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143597
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-967-2022
identifier_str_mv The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 967-973, 2022.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143597
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-967-2022
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503523835052032