Exportação concluída — 

Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.

Detalhes bibliográficos
Autor(a) principal: SOARES, A. C.
Data de Publicação: 2023
Outros Autores: SOARES, J. C., SANTOS, D. M. dos, MIGLIORINI, F. L., POPOLIN-NETO, M., PINTO, D. dos S. C., CARVALHO, W. A., BRANDAO, H. de M., PAULOVICH, F. V., CORREA, D. S., OLIVEIRA JUNIOR, O. N., MATTOSO, L. H. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154290
https://doi.org/10.1021/acsomega.2c07944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Resumo: We report a nanoarchitectonic electronic tongue made with flexible electrodes coated with curcumin carbon dots and zein electrospun nanofibers, which could detect Staphylococcus aureus(S. aureus) in milk using electrical impedance spectroscopy. Electronic tongues are based on the global selectivity concept in which the electrical responses of distinct sensing units are combined to provide a unique pattern, which in this case allowed the detection of S. aureus through non-specific interactions. The electronic tongue used here comprised 3 sensors with electrodes coated with zein nanofibers, carbon dots, and carbon dots with zein nanofibers. The capacitance data obtained with the three sensors were processed with a multidimensional projection technique referred to as interactive document mapping (IDMAP) and analyzed using the machine learning-based concept of multidimensional calibration space (MCS). The concentration of S. aureus could be determined with the sensing units, especially with the one containing zein as the limit of detection was 0.83 CFU/mL (CFU stands for colony-forming unit). This high sensitivity is attributed to molecular-level interactions between the protein zein and C?H groups in S. aureus according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Using machine learning and IDMAP, we demonstrated the selectivity of the electronic tongue in distinguishing milk samples from mastitis-infected cows from milk collected from healthy cows, and from milk spiked with possible interferents. Calibration of the electronic tongue can also be reached with the MCS concept employing decision tree algorithms, with an 80.1% accuracy in the diagnosis of mastitis. The low-cost electronic tongue presented here may be exploited in diagnosing mastitis at early stages, with tests performed in the farms without requiring specialized laboratories or personnel.
id EMBR_693a6ebd20b8288ef772e730866d85a0
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1154290
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.Doença infecciosaNanofibraProduto lácteoCalibraçãoPropriedade elétricaLeiteBactériaZeínaProduto Derivado do LeiteBeveragesCalibrationDairy productsElectrical propertiesInfectious diseasesWe report a nanoarchitectonic electronic tongue made with flexible electrodes coated with curcumin carbon dots and zein electrospun nanofibers, which could detect Staphylococcus aureus(S. aureus) in milk using electrical impedance spectroscopy. Electronic tongues are based on the global selectivity concept in which the electrical responses of distinct sensing units are combined to provide a unique pattern, which in this case allowed the detection of S. aureus through non-specific interactions. The electronic tongue used here comprised 3 sensors with electrodes coated with zein nanofibers, carbon dots, and carbon dots with zein nanofibers. The capacitance data obtained with the three sensors were processed with a multidimensional projection technique referred to as interactive document mapping (IDMAP) and analyzed using the machine learning-based concept of multidimensional calibration space (MCS). The concentration of S. aureus could be determined with the sensing units, especially with the one containing zein as the limit of detection was 0.83 CFU/mL (CFU stands for colony-forming unit). This high sensitivity is attributed to molecular-level interactions between the protein zein and C?H groups in S. aureus according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Using machine learning and IDMAP, we demonstrated the selectivity of the electronic tongue in distinguishing milk samples from mastitis-infected cows from milk collected from healthy cows, and from milk spiked with possible interferents. Calibration of the electronic tongue can also be reached with the MCS concept employing decision tree algorithms, with an 80.1% accuracy in the diagnosis of mastitis. The low-cost electronic tongue presented here may be exploited in diagnosing mastitis at early stages, with tests performed in the farms without requiring specialized laboratories or personnel.ANDREY COATRINI SOARESJULIANA COATRINI SOARES, Universidade de São PauloDANILO MARTINS DOS SANTOSFERNANDA L. MIGLIORINIMARIO POPOLIN-NETO, Instituto Federal de Educação, Ciência e Tecnologia de São PauloDANIELLE DOS SANTOS CINELLI PINTOWANESSA ARAUJO CARVALHO, CNPGLHUMBERTO DE MELLO BRANDAO, CNPGLFERNANDO VIEIRA PAULOVICH, Eindhoven University of TechnologyDANIEL SOUZA CORREA, CNPDIAOSVALDO N. OLIVEIRA JUNIOR, Universidade de São PauloLUIZ HENRIQUE CAPPARELLI MATTOSO, CNPDIA.SOARES, A. C.SOARES, J. C.SANTOS, D. M. dosMIGLIORINI, F. L.POPOLIN-NETO, M.PINTO, D. dos S. C.CARVALHO, W. A.BRANDAO, H. de M.PAULOVICH, F. V.CORREA, D. S.OLIVEIRA JUNIOR, O. N.MATTOSO, L. H. C.2023-06-06T16:47:30Z2023-06-06T16:47:30Z2023-06-062023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleACS Omega, v. 8, n. 15, p. 13721-13732, 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154290https://doi.org/10.1021/acsomega.2c07944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-asenginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-06-06T16:47:30Zoai:www.alice.cnptia.embrapa.br:doc/1154290Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-06-06T16:47:30falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-06-06T16:47:30Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.
title Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.
spellingShingle Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.
SOARES, A. C.
Doença infecciosa
Nanofibra
Produto lácteo
Calibração
Propriedade elétrica
Leite
Bactéria
Zeína
Produto Derivado do Leite
Beverages
Calibration
Dairy products
Electrical properties
Infectious diseases
title_short Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.
title_full Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.
title_fullStr Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.
title_full_unstemmed Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.
title_sort Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.
author SOARES, A. C.
author_facet SOARES, A. C.
SOARES, J. C.
SANTOS, D. M. dos
MIGLIORINI, F. L.
POPOLIN-NETO, M.
PINTO, D. dos S. C.
CARVALHO, W. A.
BRANDAO, H. de M.
PAULOVICH, F. V.
CORREA, D. S.
OLIVEIRA JUNIOR, O. N.
MATTOSO, L. H. C.
author_role author
author2 SOARES, J. C.
SANTOS, D. M. dos
MIGLIORINI, F. L.
POPOLIN-NETO, M.
PINTO, D. dos S. C.
CARVALHO, W. A.
BRANDAO, H. de M.
PAULOVICH, F. V.
CORREA, D. S.
OLIVEIRA JUNIOR, O. N.
MATTOSO, L. H. C.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv ANDREY COATRINI SOARES
JULIANA COATRINI SOARES, Universidade de São Paulo
DANILO MARTINS DOS SANTOS
FERNANDA L. MIGLIORINI
MARIO POPOLIN-NETO, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo
DANIELLE DOS SANTOS CINELLI PINTO
WANESSA ARAUJO CARVALHO, CNPGL
HUMBERTO DE MELLO BRANDAO, CNPGL
FERNANDO VIEIRA PAULOVICH, Eindhoven University of Technology
DANIEL SOUZA CORREA, CNPDIA
OSVALDO N. OLIVEIRA JUNIOR, Universidade de São Paulo
LUIZ HENRIQUE CAPPARELLI MATTOSO, CNPDIA.
dc.contributor.author.fl_str_mv SOARES, A. C.
SOARES, J. C.
SANTOS, D. M. dos
MIGLIORINI, F. L.
POPOLIN-NETO, M.
PINTO, D. dos S. C.
CARVALHO, W. A.
BRANDAO, H. de M.
PAULOVICH, F. V.
CORREA, D. S.
OLIVEIRA JUNIOR, O. N.
MATTOSO, L. H. C.
dc.subject.por.fl_str_mv Doença infecciosa
Nanofibra
Produto lácteo
Calibração
Propriedade elétrica
Leite
Bactéria
Zeína
Produto Derivado do Leite
Beverages
Calibration
Dairy products
Electrical properties
Infectious diseases
topic Doença infecciosa
Nanofibra
Produto lácteo
Calibração
Propriedade elétrica
Leite
Bactéria
Zeína
Produto Derivado do Leite
Beverages
Calibration
Dairy products
Electrical properties
Infectious diseases
description We report a nanoarchitectonic electronic tongue made with flexible electrodes coated with curcumin carbon dots and zein electrospun nanofibers, which could detect Staphylococcus aureus(S. aureus) in milk using electrical impedance spectroscopy. Electronic tongues are based on the global selectivity concept in which the electrical responses of distinct sensing units are combined to provide a unique pattern, which in this case allowed the detection of S. aureus through non-specific interactions. The electronic tongue used here comprised 3 sensors with electrodes coated with zein nanofibers, carbon dots, and carbon dots with zein nanofibers. The capacitance data obtained with the three sensors were processed with a multidimensional projection technique referred to as interactive document mapping (IDMAP) and analyzed using the machine learning-based concept of multidimensional calibration space (MCS). The concentration of S. aureus could be determined with the sensing units, especially with the one containing zein as the limit of detection was 0.83 CFU/mL (CFU stands for colony-forming unit). This high sensitivity is attributed to molecular-level interactions between the protein zein and C?H groups in S. aureus according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Using machine learning and IDMAP, we demonstrated the selectivity of the electronic tongue in distinguishing milk samples from mastitis-infected cows from milk collected from healthy cows, and from milk spiked with possible interferents. Calibration of the electronic tongue can also be reached with the MCS concept employing decision tree algorithms, with an 80.1% accuracy in the diagnosis of mastitis. The low-cost electronic tongue presented here may be exploited in diagnosing mastitis at early stages, with tests performed in the farms without requiring specialized laboratories or personnel.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-06T16:47:30Z
2023-06-06T16:47:30Z
2023-06-06
2023
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv ACS Omega, v. 8, n. 15, p. 13721-13732, 2023.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154290
https://doi.org/10.1021/acsomega.2c07944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
identifier_str_mv ACS Omega, v. 8, n. 15, p. 13721-13732, 2023.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154290
https://doi.org/10.1021/acsomega.2c07944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503545755533312