Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Download full: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154290 https://doi.org/10.1021/acsomega.2c07944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as |
Summary: | We report a nanoarchitectonic electronic tongue made with flexible electrodes coated with curcumin carbon dots and zein electrospun nanofibers, which could detect Staphylococcus aureus(S. aureus) in milk using electrical impedance spectroscopy. Electronic tongues are based on the global selectivity concept in which the electrical responses of distinct sensing units are combined to provide a unique pattern, which in this case allowed the detection of S. aureus through non-specific interactions. The electronic tongue used here comprised 3 sensors with electrodes coated with zein nanofibers, carbon dots, and carbon dots with zein nanofibers. The capacitance data obtained with the three sensors were processed with a multidimensional projection technique referred to as interactive document mapping (IDMAP) and analyzed using the machine learning-based concept of multidimensional calibration space (MCS). The concentration of S. aureus could be determined with the sensing units, especially with the one containing zein as the limit of detection was 0.83 CFU/mL (CFU stands for colony-forming unit). This high sensitivity is attributed to molecular-level interactions between the protein zein and C?H groups in S. aureus according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Using machine learning and IDMAP, we demonstrated the selectivity of the electronic tongue in distinguishing milk samples from mastitis-infected cows from milk collected from healthy cows, and from milk spiked with possible interferents. Calibration of the electronic tongue can also be reached with the MCS concept employing decision tree algorithms, with an 80.1% accuracy in the diagnosis of mastitis. The low-cost electronic tongue presented here may be exploited in diagnosing mastitis at early stages, with tests performed in the farms without requiring specialized laboratories or personnel. |
id |
EMBR_693a6ebd20b8288ef772e730866d85a0 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1154290 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk.Doença infecciosaNanofibraProduto lácteoCalibraçãoPropriedade elétricaLeiteBactériaZeínaProduto Derivado do LeiteBeveragesCalibrationDairy productsElectrical propertiesInfectious diseasesWe report a nanoarchitectonic electronic tongue made with flexible electrodes coated with curcumin carbon dots and zein electrospun nanofibers, which could detect Staphylococcus aureus(S. aureus) in milk using electrical impedance spectroscopy. Electronic tongues are based on the global selectivity concept in which the electrical responses of distinct sensing units are combined to provide a unique pattern, which in this case allowed the detection of S. aureus through non-specific interactions. The electronic tongue used here comprised 3 sensors with electrodes coated with zein nanofibers, carbon dots, and carbon dots with zein nanofibers. The capacitance data obtained with the three sensors were processed with a multidimensional projection technique referred to as interactive document mapping (IDMAP) and analyzed using the machine learning-based concept of multidimensional calibration space (MCS). The concentration of S. aureus could be determined with the sensing units, especially with the one containing zein as the limit of detection was 0.83 CFU/mL (CFU stands for colony-forming unit). This high sensitivity is attributed to molecular-level interactions between the protein zein and C?H groups in S. aureus according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Using machine learning and IDMAP, we demonstrated the selectivity of the electronic tongue in distinguishing milk samples from mastitis-infected cows from milk collected from healthy cows, and from milk spiked with possible interferents. Calibration of the electronic tongue can also be reached with the MCS concept employing decision tree algorithms, with an 80.1% accuracy in the diagnosis of mastitis. The low-cost electronic tongue presented here may be exploited in diagnosing mastitis at early stages, with tests performed in the farms without requiring specialized laboratories or personnel.ANDREY COATRINI SOARESJULIANA COATRINI SOARES, Universidade de São PauloDANILO MARTINS DOS SANTOSFERNANDA L. MIGLIORINIMARIO POPOLIN-NETO, Instituto Federal de Educação, Ciência e Tecnologia de São PauloDANIELLE DOS SANTOS CINELLI PINTOWANESSA ARAUJO CARVALHO, CNPGLHUMBERTO DE MELLO BRANDAO, CNPGLFERNANDO VIEIRA PAULOVICH, Eindhoven University of TechnologyDANIEL SOUZA CORREA, CNPDIAOSVALDO N. OLIVEIRA JUNIOR, Universidade de São PauloLUIZ HENRIQUE CAPPARELLI MATTOSO, CNPDIA.SOARES, A. C.SOARES, J. C.SANTOS, D. M. dosMIGLIORINI, F. L.POPOLIN-NETO, M.PINTO, D. dos S. C.CARVALHO, W. A.BRANDAO, H. de M.PAULOVICH, F. V.CORREA, D. S.OLIVEIRA JUNIOR, O. N.MATTOSO, L. H. C.2023-06-06T16:47:30Z2023-06-06T16:47:30Z2023-06-062023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleACS Omega, v. 8, n. 15, p. 13721-13732, 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154290https://doi.org/10.1021/acsomega.2c07944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-asenginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-06-06T16:47:30Zoai:www.alice.cnptia.embrapa.br:doc/1154290Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-06-06T16:47:30falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-06-06T16:47:30Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk. |
title |
Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk. |
spellingShingle |
Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk. SOARES, A. C. Doença infecciosa Nanofibra Produto lácteo Calibração Propriedade elétrica Leite Bactéria Zeína Produto Derivado do Leite Beverages Calibration Dairy products Electrical properties Infectious diseases |
title_short |
Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk. |
title_full |
Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk. |
title_fullStr |
Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk. |
title_full_unstemmed |
Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk. |
title_sort |
Nanoarchitectonic E-tongue of electrospun zein/curcumin carbon dots for detecting Staphylococcus aureus in milk. |
author |
SOARES, A. C. |
author_facet |
SOARES, A. C. SOARES, J. C. SANTOS, D. M. dos MIGLIORINI, F. L. POPOLIN-NETO, M. PINTO, D. dos S. C. CARVALHO, W. A. BRANDAO, H. de M. PAULOVICH, F. V. CORREA, D. S. OLIVEIRA JUNIOR, O. N. MATTOSO, L. H. C. |
author_role |
author |
author2 |
SOARES, J. C. SANTOS, D. M. dos MIGLIORINI, F. L. POPOLIN-NETO, M. PINTO, D. dos S. C. CARVALHO, W. A. BRANDAO, H. de M. PAULOVICH, F. V. CORREA, D. S. OLIVEIRA JUNIOR, O. N. MATTOSO, L. H. C. |
author2_role |
author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
ANDREY COATRINI SOARES JULIANA COATRINI SOARES, Universidade de São Paulo DANILO MARTINS DOS SANTOS FERNANDA L. MIGLIORINI MARIO POPOLIN-NETO, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo DANIELLE DOS SANTOS CINELLI PINTO WANESSA ARAUJO CARVALHO, CNPGL HUMBERTO DE MELLO BRANDAO, CNPGL FERNANDO VIEIRA PAULOVICH, Eindhoven University of Technology DANIEL SOUZA CORREA, CNPDIA OSVALDO N. OLIVEIRA JUNIOR, Universidade de São Paulo LUIZ HENRIQUE CAPPARELLI MATTOSO, CNPDIA. |
dc.contributor.author.fl_str_mv |
SOARES, A. C. SOARES, J. C. SANTOS, D. M. dos MIGLIORINI, F. L. POPOLIN-NETO, M. PINTO, D. dos S. C. CARVALHO, W. A. BRANDAO, H. de M. PAULOVICH, F. V. CORREA, D. S. OLIVEIRA JUNIOR, O. N. MATTOSO, L. H. C. |
dc.subject.por.fl_str_mv |
Doença infecciosa Nanofibra Produto lácteo Calibração Propriedade elétrica Leite Bactéria Zeína Produto Derivado do Leite Beverages Calibration Dairy products Electrical properties Infectious diseases |
topic |
Doença infecciosa Nanofibra Produto lácteo Calibração Propriedade elétrica Leite Bactéria Zeína Produto Derivado do Leite Beverages Calibration Dairy products Electrical properties Infectious diseases |
description |
We report a nanoarchitectonic electronic tongue made with flexible electrodes coated with curcumin carbon dots and zein electrospun nanofibers, which could detect Staphylococcus aureus(S. aureus) in milk using electrical impedance spectroscopy. Electronic tongues are based on the global selectivity concept in which the electrical responses of distinct sensing units are combined to provide a unique pattern, which in this case allowed the detection of S. aureus through non-specific interactions. The electronic tongue used here comprised 3 sensors with electrodes coated with zein nanofibers, carbon dots, and carbon dots with zein nanofibers. The capacitance data obtained with the three sensors were processed with a multidimensional projection technique referred to as interactive document mapping (IDMAP) and analyzed using the machine learning-based concept of multidimensional calibration space (MCS). The concentration of S. aureus could be determined with the sensing units, especially with the one containing zein as the limit of detection was 0.83 CFU/mL (CFU stands for colony-forming unit). This high sensitivity is attributed to molecular-level interactions between the protein zein and C?H groups in S. aureus according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Using machine learning and IDMAP, we demonstrated the selectivity of the electronic tongue in distinguishing milk samples from mastitis-infected cows from milk collected from healthy cows, and from milk spiked with possible interferents. Calibration of the electronic tongue can also be reached with the MCS concept employing decision tree algorithms, with an 80.1% accuracy in the diagnosis of mastitis. The low-cost electronic tongue presented here may be exploited in diagnosing mastitis at early stages, with tests performed in the farms without requiring specialized laboratories or personnel. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-06T16:47:30Z 2023-06-06T16:47:30Z 2023-06-06 2023 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ACS Omega, v. 8, n. 15, p. 13721-13732, 2023. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154290 https://doi.org/10.1021/acsomega.2c07944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as |
identifier_str_mv |
ACS Omega, v. 8, n. 15, p. 13721-13732, 2023. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154290 https://doi.org/10.1021/acsomega.2c07944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503545755533312 |